לדלג לתוכן

Akt

מתוך ויקיפדיה, האנציקלופדיה החופשית
איור המתאר את המבנה הגבישי של Akt1, אחד משלושת האיזופורמים של Akt

Aktאופרוטאין קינאז B(‏PKB) הואפרוטאין קינאזהספציפי לזרחון שלסרין/תריאוניןהמשחק תפקיד חשוב במגוון תהליכים תאיים, בהםשגשוג תאי,שעתוק,אפופטוזהוהישרדות תאית,מטבוליזםשלליפידיםושלגלוקוז,אנגיוגנזהועוד.

בגלל פעילותו הפרו-הישרדותית בקרב תאים, Akt הואאונקוגןבולט מאוד. למעשה, מסלול מעבר האותות בו הוא משמש מרכיב מרכזי -מסלול PI3K-Akt,הוא מסלול מעבר האותות בו קיים מספר המוטציות הרב ביותר בגידולים סרטניים אצל בני אדם, בלמעלה מ-40% מכלל סוגי הגידולים השונים. מסיבה זו הפך Akt לאטרקטיבי מאוד בתחום חקר הסרטן. נוסף על כך, פעילות לקויה של Akt מקושרת גם לסוכרת מסוג 2,למחלות קרדיו-וסקולריות ונוירודגנרטיביות וכן להיפוטרופיה שרירית.

תרשים המתאר את מבנהו של Akt

ל-Akt יש 3איזופורמיםשונים - Akt1, ‏Akt2 ו-Akt3, אשר חולקים הומולוגיה רחבה עםפרוטאין קינאז A,GוC.כל שלושת האיזופורמים של Akt בנויים מ-3 דומיינים שמורים: בצד האמיני -דומיין הומולוגי לפלקסטרין(PH domain), במרכז - דומיין קינאז (kinase domain), ובצד הקרבוקסילי - דומיין בקרתי (regulatory domain ובקיצור RD) בעל מוטיב הידרופובי, שלו מאפיינים שלקינאז AGC.לעיתים הדומיין הקרבוקסילי מכונה בפשטות hydrophobic motif (ובקיצור HM) בגלל המוטיב ההידרופובי המופיע בו.

דומיין ה-PH נתגלה בתחילה בחלבוןפלקסטרין,שהוא חלבון המטרה העיקרי שעובר זרחון על ידיפרוטאין קינאז Cבטסיות דם.ככלל, דומיין PH יכול ליצור אינטראקציות עם תוצרים ליפידים ממברנליים המיוצרים על ידיפוספואינוזיטיד 3 קינאז(PI3K), כדוגמתפוספטידילאינוזיטול 3,4,5-טריפוספט(PIP3). אנליזה ביוכימית של Akt חשפה שדומיין ה-PH שלו יכול לקשור הן את PIP3 והן אתפוספטידילאינוזיטול 3,4-ביפוספט(PI(3,4)P2) באפיניותזהה. לדומיין ה-PH יש תפקיד חשוב הן בשינוע של Akt לממברנה והן זיהוי על ידי קינאזות הנמצאות במעלה הזרם ל-Akt (כלומר - מזרחנות אותו)[1]

דומיין הקינאז (או הדומיין הקטליטי), אשר ממוקם בחלק המרכזי של החלבון, חולק דמיון רב עם קינאזות AGC אחרים כמופרוטאין קינאז A,פרוטאין קינאז C,‏p70S6Kו-p90RSK.כמו קינאזות רבים אחרים, גם ל-Akt יש לולאת אקטיבציה שמורה החשובה מאוד לאקטביציה שלו, המסומנת על ידי מוטיב DFG (חומצה אספרטית-פנילאלנין-גליצין) ומוטיב APE (אלנין-פרולין-גלוטמט), בתחילת הלולאה ובסופה, בהתאמה. הלולאה ממוקמת באונה הקרובה יותר לצד הקרבוקסילי של החלבון (c-lobe), ובה קיים שיירתריאוניןשמור, שזרחון שלו הוא צעד הכרחי לאקטיבציה של Akt.[1]

בנוסף, לכל 3 האיזופורמים של Akt יש תוספת של כ-40 חומצות אמינו בצד הקרבוקסילי של החלבון (דומיין RD או HM). אזור זה מכיל מוטיב הידרופובי של F-X-X-F/Y-S/T-Y/F (פנילאלנין - X - X - פנילאלנין/טירוזין-סרין/תריאונין - טירוזין/פנילאלנין), כאשר X יכול להיות כל חומצה אמינית אחרת, והוא שמור אצל כל משפחת קינאזות ה-AGC. אצל כל היונקים, הרצף שנמצא ב-3 האיזופורמים של Akt הוא זהה - FPQFSY (פנילאלנין-פרולין-גלוטמין-פנילאלנין-סרין-טירוזין), מלבד מאחד הוריאנטים שלAkt3,‏Pkbγ-1, המתקבל משחבור חליפיאצל האדםואצל העכבר,החסר את המוטיב הזה. לכן ביונקים, זרחון של שייר התריאונין הממוקם בללואת האקטיבציה בדומיין הקינאז ושל שייר הסרין הממוקם בדומיין הרגולטורי (RD), חיוניים לאקטביציה מלאה של Akt.[1]

מנגנון אקטיבציה

[עריכת קוד מקור|עריכה]
תרשים המתאר את מנגנון האקטיבציה של Akt במסלול מעבר האותות PI3K/AKT.

פעילותו של Akt מבוקרתבמורד הזרםלקולטני גורמי גידולמסוגטירוזין קינאז,כדוגמת חברי משפחתEGF,אינסולין,PDGF,‏FGFו-VEGF.ה-RTK מאקטב את הקינאזPI3K,או בצורה ישירה או בצירוף של חלבונים אדפטורים כדוגמתIRS1ו-IRS2.לאחר מכן, PI3K מזרחן אתPIP2,כך שבמקומו מתקבלPIP3.בשלב הזה, Akt נקשר ל-PIP3 בממברנת התא,דבר המתבטא בשינוי קונפורמציונלי שמביא לזירחונו של Akt בעיקר ב-2 אתרים שמורים: האחד בשייר שלסרין- Ser473, והשני בשייר שלטירוזין- Thr308, ובכך לאיקטובו של Akt.[2]המיקום המדויק של שיירי הסרין והתריאונין השמורים משתנה בין האיזופורמים השונים של Akt - ‏Ser473 ו-Thr308 ב-Akt1;‏ Ser474 ו-Thr309 ב-Akt2;‏ Ser472 ו-Thr305 ב-Akt3. בנוסף, את שייר התריאונין מזרחןPDK1,ואת שייר הסרין מזרחןmTORC2,והדבר מביא לאקטיבציה של Akt.

כתוצאה מהזרחון של Thr308 הממוקם בדומיין הקטליטי של Akt על ידי PDK1, מתרחש שינוי קונפורמציונלי בחלבון המגביר את האפיניות של הסובסטרטל-Akt ומקדם את פעילות הקינאז של Akt, וכתוצאה מהזרחון של Ser473 על ידי mTORC2, חלה עלייה באפיניות של Akt ל-PDK1 וכך יש עלייה בפעילות Akt. למעשה, בספרות המחקר אופיינו מספר רב של קינאזות שיכולות לזרחן את Ser473, וככל הנראה המנגנון הקובע את פעילותו המלאה של Akt הוא תלוי הקשר; למשל, בעקבות נזק לדנ "א הקינאזPIKKהוא שאחראי על הזרחון של Ser473.[2]כאשר נעשומוטציות התמרהל-Ser473 ול-Thr308 (ב-Akt1), והללו הוחלפו לאלנין- Akt הראה פעילות מעטה מאוד, אפילו לאחר הוספת אינסולין אוIGF-1;ואילו כאשר נעשו מוטציות שמדמות זרחון קבוע על שיירי הסרין והתריאונין - Akt הראה פעילות קינאז קונסטיטוטיבית. ממצאים אלו מעידים על כך ש-2 האתרים השמורים הללו הםהכרחייםומספיקיםלאקטיבציה מלאה של Akt.[3]

בקרים שליליים חשובים של מסלול מעבר האותות PI3K/AKT כוללים את הגנים מדכאי הסרטןוהפוספטאזותPTEN,‏PP2Aו-PHLPP,שגורמים, בהתאמה, לדה-פוספורילציה, שלPIP3,‏ Thr308 (ב-Akt) ו-Ser473 (ב-Akt).[2]

בקרה על ידי חלבונים אחרים

[עריכת קוד מקור|עריכה]

קיימים מספר חלבונים שמקיימים אינטראקציה עם Akt, כאשר רבים מהם הם סובסטרטים של Akt אשר ברוב המקרים אינם משפיעים על פעילות הקינאז של Akt. עם זאת, קיימים מספר חלבונים נוספים מלבד PDK1 ו-mTORC2 שמבקרים את הפעילות של Akt:

  • CTMP- בקר שלילי של Akt הנקשר לדומיין הרגולטורי (RD) שבצד הקרבוקסילי של Akt, כאשר האינטראקציה נוצרת בצמוד לממברנת התא. כאשר ביטאו ביתר את CTMP, הדבר גרם לזרחון מועט יותר של Ser473 ו-Thr308, וכך לאני-אקטיבציה של Akt. מעבר לזה, ביטוי ביתר של CTMP הביא לנסיגה בגידול סרטני שנגרם על ידי v-Akt (חלבון Akt ממקורויראלי), הןin vivoוהןin vitro.ממצאים אלו מעידים של-CTMP קיימת חשיבות פוטנציאלית לשמור את Akt במצב לא-מזורחן ולא-פעיל באמצעות אינטראקציית חלבון-חלבון פיזית בין שניהם.[3]
  • Grb10-חלבון אדפטורממשפחת החלבוניםGrb7,החסר פעילות אנזימטית פנימית ומקודד לדומיינים פונקציונליים הכוללים את דומיין PH ואתדומיין SH2.התפקיד של Grb10 במעבר האותות של גורמי גידול שונים יכול להיות מעכב או מעורר, כתלות בהימצאות דומייני PH ו-SH2. נמצא כי Grb10 יוצר אינטראקציה עםc-kit(רצפטור טירוזין קינאז בתאי גזע המתופויאטיים) באמצעות דומיין ה-SH2 שלו, וכן כי Grb10 יוצר קומפלקס עם Akt. ככל הנראה ל-Grb10 קיים תפקיד בטרנסלוקציה של Akt לממברנת התא, ורמות הביטוי שלו משפיעות בצורה מאוד משמעותית על פעילותו של Akt.[4]
  • קרטין 10- אחד מהמרכיבים העיקריים שלסיבי הבינייםבשלד התא.הוא יודע לקשור את Akt ובאופן זה "לכלוא" אותו בשלד התא, וכך לעכב את הטרנסלוקציה שלו לממברנת התא. דבר זה גורם לאינ-אקטיבציה של Akt, ולכן לעיכוב תהליכי שגשוג תאי.[5]
  • חלבוני עקת חום(HSP) - חלבונים המעורבים בהגנה על חלבונים אחרים מדגרדציה בעקבות החשיפה לעקת חום. כבר בסוף המאה ה־20 התחילו להצטבר עדויות על כך שהאקטיבציה של Akt גוברת בעקבות פעילות של חלבוני עקת חום באופן ששיא האקטיבציה מתרחש 10 דקות לאחר החשיפה לעקת החום. עד היום אופיינו 2 חלבוני עקת חום שיוצרים אינטראקציה עם Akt:‏Hsp27ו-Hsp90.מחקרים מצאו ש-Hsp27 נקשר באופן ספציפי לאיזופורמים השונים של Akt, בהתאם. כמו כן, מחקר נוסף מצא כי האינטראקציה של Hsp27-Akt מובילה לאקטיבציה של Akt, ולמניעת אפופטוזה בנויטרופילים.[5]
נמצא כי Akt מסוגל ליצור קומפלקסים עם חלבון עקת החום Hsp90, באופן ש-Hsp90 יוצר אינטראקציה עם האזור המרכזי של דומיין הקינאז של Akt (חומצות אמינו 229–309), וכך שעיכוב והפרעה של הקומפלקס מקדם דה-פוספורילציה של Akt והורדת פעילות הקינאז. 2 קבוצות חוקרים שונות שחקרו את הקומפלקס של 2 החלבונים הללו בתחילת המאה ה-21 היו חלוקות בנוגע לדרך בה מתרחשת האינ-אקטיבציה של Akt (לאחר הפרעה לקומפלקס) - קבוצה אחת מצאה עדויות לכך שהאינ-אקטיבציה של Akt מתרחשת בעקבות פעילותפרוטאומית(של דגרדציה, באופן שרמת הביטוי של Akt יורדת), והקבוצה השנייה מצאה שהאינ-אקטיבציה של Akt מתרחשת בעקבות דה-פוספורילציה שלו על ידי PP2A (והחלבון הופך ללא פעיל, אך רמתו נשארת קבועה). הקישור בין Akt ל-Hsp90 אינו ישיר, ומתווך על ידי הקו-שפרוןCDC37.נמצא כי כאשר Akt קשור בקומפלקס עם CDC37 ועם Hsp90 הוא נמצא במצבו הפעיל, ומזרחן אתGSK3Bבתנאיin vitro.[6]
באופן זה, Akt פעיל מיוצב על ידי אינטראקציה ויצירת קומפלקס עם CDC37/Hsp90, המגן עליו מפני דה-פוספורילציה ופוטנציאלית גם מדגרדציה.[6]

Akt מהווה צומת חשוב במספר רב שלקסקדותשל מעברי אותות בתא, במורד הזרם לקולטני גורמי גידול מסוג טירוזין קינאז ולקולטנים המצומדים לחלבון G.מסיבה זו, האיזופורמיםהשונים של Akt משחקים תפקידים חשובים במגוון רב של תהליכים תאיים בהם הישרדות, שגשוג, גדילה, נדידה, קוטביות,מטבוליזםשלליפידיםוגלוקוז,התכווצות שלשרירי השלדושל תאי שריר הלב,אנגיוגנזהוהתחדשות עצמית של תאי גזע. פעילות לקויה של Akt מקושרת לסרטןסוכרת מסוג 2,למחלות קרדיו-וסקולריות ונוירודגנרטיביות ולהיפוטרופיה שרירית.[7]

הסובסטרטים של Akt מכילים לעיתים קרובות מוטיב קונצנזוס של R-X-R-X-X-S/T (מכונה "phospho-Akt-substrate consensus motif" ). אנליזה של מוטיב הקונצנזוס הזה מצביעה על כך שקיימים אלפי סובסטרטים תוך-תאיים פוטנציאליים ל-Akt, אך עד כה אופייני רק כ-60–70 סובסטרטים כאלו. Akt יכול להשפיע הן בצורה חיובית והן בצורה שלילית על פעילות הסובסטרטים הללו (אם כי לרוב הוא גורם לעיכוב שלהם), וכן לשנות את מיקומם התוך-תאי או לשנות את יציבותם.

הישרדות תאית ואנטי-אפופטוזה

[עריכת קוד מקור|עריכה]
תרשים המתאר את פעילותו האנטי-אפופטוטית של Akt.

מוות תאיאפופטוטיהוא מאפיין נפוץ של תהליכים פיזולוגיים ופתולוגיים רבים, ול-Akt תפקיד מכריע בקידום הישרדות התא כתגובה לגורמי גידול, לאונקוגנים ולעקה תאית.[8]‏ Akt מעכב מספר חלבונים המקדמיםאפופטוזה(מוות תאי מתוכנת), בהם כמה מחברי משפחת פקטורי השעתוקFOXO:‏FOXO1,‏FOXO3a‏,FOXO4ו-FOXO6.[9]זרחוןשל חברי משפחת FOXO (המתרחש ב-3 אתרים שונים של כל פקטור שעתוק)[8]מוביל להרחקתם מגרעין התאולאינ-אקטיבציה שלהם, וכתוצאה מכך לירידה בשעתוקשל ה-mRNA של גנים המקודדים לחלבונים הדרושים לקידום האפופטוזה (כמו למשל חלבונים בעלי דומיין BH-3 בלבד ממשפחת Bcl-2הדרושים למסלול המיטוכונדריאלי של האפופטוזה[ובהםBim], אוFasLהדרוש למסלול החיצוני של האפופטוזה).[7]

בנוסף, Akt מזרחן מספר חלבונים פרו-אפופטוטיים, ובכך משנה את פעילותם באופן ישיר. החלבוןBad,למשל, היה אחד מחלבוני המטרה הראשונים של Akt שזזהו; Bad הוא חלבון פרו-אפופטוטי ממשפחת Bcl-2 בעל דומיין BH-3 בלבד, הנקשר לחלבוניםBcl-2אוBcl-xL,ובכך מעכב את פעילותם האנטי-אפופטוטית. פקטורי הישרדות מעוררים את הזרחון של Bad (בשייר Ser136) על ידי Akt, והדבר גורם ליצירת אתר קישור לחלבונים ממשפחת14-3-3,וכתוצאה מכך לשחרור של Bad מחלבוני המטרה שלו ולהפרעה ביכולתו ליצור אינטראקציה עם Bcl-2/Bcl-xL הממוקמים בממברנה החיצונית של המיטוכונדריה.היכולת לזרחן את Ser136 אצל Bad ובכך לעכב את פעילותו הפרו-אפופטוטית, היא חיונית לאפקט ההישרדותי של Akt עלנוירוניםוסוגי תאים נוספים.[8]בדומה לכך, זרחון של החלבון הפרו-אפופטוטיBax(בשייר Ser 184) על ידי Akt, מעכב את שינועו של Bax למיטוכונדריה, ובכך מונע ממנו לעבור שינוי מבני חיוני המתרחש לאחר אינדוקציה של האפופטוזה. חלבון נוסף אותו מזרחן Akt הואקספאז 9,ציסטאין פרוטאזשמעורב בבקרה ובהוצאה לפועל של תהליך האפופטוזה, כאשר אקטיבציה שלו מתאפשרת רק באמצעות ביקועו על ידי קומפלקס האפופטוזוםהנוצר לאחר שחרור שלציטוכרום cמהמיטוכונדריה. זרחונו של קספאז 9 על ידי Akt מונע את ביקועו ואת האקטיבציה שלו, וכך מעכב את האפופטוזה.[9]כמו כן, Akt מזרחן את החלבוןASK-1(בשייר Ser 83) ובכך מחליש את פעילותו הפרו-אפופטוטית; ASK-1 פועל בעת מצבי עקה, ומעביר אותות עקה ל-JNKולפרוטאין קינאזות מופעלי מיטוגן p38,ובכך מפעיל מסלולי אותות מיוחדים של אפופטוזה המושרית בעקבות עקה.[7]

מלבד עיכוב של חלבונים פרו-אפופטוטיים, Akt פועל גם על חלבוני מטרה המקדמים הישרדות תאית, בהם למשלIKKα,שכאשר מאוקטב על ידי Akt - הוא עובר זרחון ובאמצעות כך מקדם דגרדציה שלI-κBקופקטורשמעכב את NF-κB מלהיכנס לגרעין התא. הדבר מאפשר ל-NF-κB לעבור שינוע לתוך גרעין התא, ושם הוא משעתק גנים פרו-הישרדותיים כמוIAP1ו-IAP2.‏ Akt גם מבקר באופן חיובי את פעילותו של פקטור השעתוקCREB,על ידי זרחון ישיר באתר Ser133. הזרחון משרה את קשירתם של חלבוני עזר ל-CREB, הדרושים לו כדי לשעתק גנים אנטי-אפופטוטיים כדוגמת Bcl-2 ו-Mcl-1.[7]

בנוסף, Akt גם את המסלול האפופטוטי המושרה על ידי החלבוןp53( "שומר הגנום"; מקדם אפופטוזה בעקבות נזקידנ "א);MDM2הוא E3אוביקוויטין ליגאזשביטויו עולה על ידי p53, הפועל בדרך שלמשובשלילי - MDM2 מבקר באופן שלילי את רמתו התוך-תאית של p53, כך ש-p53 מגביר את ביטויו של MDM2, שבתורו מוריד את ביטויו של p53. כאשר Akt מזרחן את MDM2 (באתרים Ser166 ו-Ser186), הוא גורם לירידה באוביקווינטינציה העצמית של MDM2 (פירוק עצמי במטרה לשמור על רמות חלבון MDM2 תקינות), כך ש-MDM2 נהיה יציב מאוד. כתוצאה מכך, p53 עובר דגרדציה תכופה בהרבה, ופעילותו הפרו-אפופטוטית מעוכבת.[7]

ככלל, קיימים בתא קינאזות המתפקדים כחלבוני פיגום, שבין היתר יוצרים קומפלקס עם מספר חלבונים אחרים הקשורים למסלולי מעבר אותות שונים בתא, באופן שמביא לכך שאותם חלבונים ימצאו בסמיכות ויוכלו לבצע את מעברי האותות. זהו מנגנון חשוב וחיוני בתא, הקובע מתי סיגנל מסוים למעשה יופעל. אמנם טרם נמצאו חלבוני פיגום הנקשרים ישירות ל-Akt, אך Akt נמצא משתתף ביצירת קומפלקסים של חלבוני פיגום עם חלבונים אחרים המהווים סובסטרטים שלו. למשל, Akt יכול לקשור 2 סוגים של חלבוני פיגום במסלול MAPK מתווך עקה(SAPK): ראשית, Akt1 יכול להיקשר ל-JIP1,חלבון פיגום שלJNKבנוירונים,וכך להוריד את האפיניותשלMLK3ל-JIP1, וכתוצאה מכך להביא לירידה באקטיבציה של JNK (ומניעתאפופטוזהבנוירונים). שנית, Akt יכול להיקשר ל-POSH,חלבון פיגום במסלול MLK-JNK, ולעכב את המשך מעבר האותות במורד הזרם ל-JNK.[3]

לא כל המסלולים המאוקטבים על ידי Akt חשובים וממלאים תפקיד מרכזי בכל סוגי התאים. למשל, בתאי שריר חלק וסקולרי(VSMCs), ‏Akt מונע אפופטוזה בעיקר באמצעות עיכוב של FOXO3a ושל GSK3.[9]

תרשים המתאר את השפעתו של Akt על תהליכי הגדילה התאית, באמצעות בקרה על קומפלקס ה-mTORC1. ניתן להבחין ש-Akt מזרחן ומעכב את TSC2 ואת PRAS40. במצב רגיל - TSC2 מאיץ את ההידרוליזה של ה-GTP הטעון על Rheb במצבו הפעיל, כך שמתקבל GDP וכתוצאה מכך Rheb אינו פעיל; וכן PRAS40 מעכב את mTORC1. כאשר Akt פעיל, הוא מעכב את TSC2, ולכן Rheb נותר "תקוע" במצבו הפעיל ומאקטב את mTORC1; וכן PRAS40 מפסיק לעכב את mTORC1. בדרכים עקיפות אלו מביא Akt לאיקטובו של mTORC1.

אחת מהפונקציות השמורות ביותר של Akt היא תפקידו בקידום גדילה תאית (למשל, עלייה בנפח התא ובמסת מרכיביו). הדבר נעשה בעיקר באמצעות הקומפלקס החלבוניmTORC1,שפעילותו מבוקרת על ידי כמות הנוטריינטים בתא ועל ידי אותות גורמי גידול.[7]mTORC1 הוא בקר בעל תפקיד חיוני באתחול התרגוםובביוגנזהשלריבוזומים,ומשחק תפקיד שמור אבולוציונית בבקרה על תהליכי הגדילה התאית. הרגישות המוגברת למעכבי mTORC1 שמפגינות רקמות סרטניות בעכברי מודל שעברו אקטיבציה אונקוגנית של מסלול ה-PI3K-Akt, מעידות על חשיבות האקטיבציה של mTORC1 במורד הזרם ל-Akt לתהליכי הגדילה התאית. על אף שהיה ידוע בעבר כי אקטיבציה של Akt משפיעה גם על הסובסטרטים של mTORC1 - למשלS6K1או4E-BP1,החוקרים התקשו לחשוף את המנגנון שבאמצעותו Akt עושה זאת. בשנת 1998 היו חוקרים שטענו כי Akt מזרחן את mTORC1 באתר Ser2448, אך אנליזה של מוטציות לא הצליחה לחשוף חשיבות פונקציונלית כלשהי מזרחון זה. מחקרים מאוחרים יותר (מ-2005) מצאו כי החלבון S6K1, ולא Akt, הוא שאחראי על הזרחון באתר זה של mTORC1.[10]

בראשית המאה ה-21 נמצא, באמצעות גישות המשתמשות בגנטיקה שלדרוזופילהובביולוגיה של התא אצל יונקים, כי החלבוןמדכא הסרטןTSC2משמש כבקר שלילי חיוני במסלול מעבר האותות של mTORC1, וכי זרחון המתווך על ידי Akt מעכב את פעילותו של TSC2. הסתבר ש-Akt מזרחן באופן ישיר 2 אתרים שמורים על גבי TSC2: ‏Ser939 ו-Thr1462, וכן כי אפשרי שהוא מזרחן 2–3 אתרים נוספים מלבדם על גבי TSC2 (‏Ser981, ‏Ser1130/1132). נמצא כי TSC2, כאשר נמצא בקומפלקס עם הפרטנר שלוTSC1,פועל כחלבוןGAP(חלבוני בקרה שמאיצים את פעילות ה-GTPaseשלחלבוני G,ומזרזים את ההידרוליזה מ-GTP ל-GDP) עבור החלבוןRheb,שכאשר נמצא בצורתו האקטיבית (קרי: קושרGTP) - הוא מאקטב את mTORC1. מכאן, ש-Akt מאקטב את mTORC1 באופן בלתי-ישיר באמצעות זרחון של TSC2 ועיכובו; TSC2, שבמצב פעיל (לא מזורחן) הוא בעל פעילות GAP על Rheb כך ש-Rheb נמצא בצורתו הבלתי פעילה ולא מאקטב את mTORC1 - אינו פועל כעת (כשהוא מזורחן), וכתוצאה מכך - Rheb נותר טעון GTP ומאקטב את mTORC1.[10]בנוסף, סובסטרט נוסף של Akt המעורב בבקרה על mTORC1 הוא החלבוןPRAS40,הפועל כבקר שלילי של mTORC1; ‏Akt מזרחן באופן ישיר את PRAS40 באתר Thr246, ובכך גורם לחלבון ממשפחת 14-3-3 לקשור את PRAS40, וכתוצאה מכך mTORC1 משתחרר מאחיזתו של PRAS40 המעכב אותו. אם כן, Akt מזרחן הן את TSC2 והן את PRAS40 ומונע מהם לעכב את mTORC1, וכך, באופן בלתי ישיר, גורם לאקטובו של mTORC1.[11]

Akt יכול לגרום לפרוליפרציה תאית (שגשוג תאי) דרך מספר רב של חלבוני מטרה הנמצאים במורד הזרם לו, ומבקרים אתמחזור התא.למשל, Akt יכול לזרחן אתCDKN1B(‏p27Kip1;מעכבקינאזות תלויות ציקליןשונות המוציאות לפועל, למעשה, את מחזור התא) באתר Thr157, והדבר מוביל לקשירה של CDKN1B על ידי חלבון ממשפחת 14-3-3 בציטוזפלזמה. יכולתו של Akt למנוע את הלוקליזציה של CDKN1B לגרעין התא, מחלישה את יכולתו של CDKN1B לעכב את מחזור התא. זרחון של CDKN1B בתיווכו של Akt אינו דרוש לאפקט של פרוליפרציה בכל המערכות בטבע, ולמשל האתר Thr157 אינו שמור בגרסאות אחרות של החלבון p27 אצלמכרסמים.בנוסף, Akt מעכב את ביטויו של CDKN1B באמצעות זרחון ועיכוב של פקטורי שעתוק ממשפחת FOXO הדרושים לשעתוק שלו. כמו כן, נמצא כי Akt יכול לזרחן גם את החלבון p21Cip1/Waf1באתר Thr145, וכמו במקרה של CDKN1B - הדבר מוביל ללוקליזציה של p21 בציטופלזמה.דרך נוספת באמצעותה יכול Akt לעכב את ביטויו של p21 היא זרחון ואקטוב של החלבון MDM2, שגורם לבקרה שלילית (down-regulation) על שעתוק של p21 בתיווך-p53.[12]

Akt יכול להניע פרוליפרציה תאית גם באמצעות זרחון החלבונים GSK3,‏ TSC2 ו-PRAS40, שלהם תפקיד בסינתזה ובשמירה על יציבות של חלבונים שונים המעורבים בכניסה למחזור התא. כאשר GSK3 נמצא ממצב הפעיל שלו (לא מזורחן), הוא יכול לזרחן את הציקלינים של שלב G1-ציקלין Dוציקלין Eוכן את פקטורי השעתוקc-junו-c-myc,אשר משחקים תפקיד חשוב במעבר משלב G1לשלב S (הכפלת הדנ "א), וכך לסמן אותם לדגרדציהפרוטיאוזומלית.על כן, כאשר Akt מזרחן ומעכב את GSK3, הוא למעשה מגביר את היציבות של החלבונים הללו. Akt שולט גם על הבקרה של תרגום של חלבונים החיוניים להתקדמות של מחזור התא, על ידי זרחון של TSC2 ושל PRAS40 וכתוצאה מכך אקטיבציה של mTORC1; על אף שתפקידו המפורסם ביותר הוא הנעת הגדילה התאית, mTORC1 הוא גם בקר חשוב ביותר של תהליכי הפרוליפרציה התאית. בין היתר, mTORC1 (במצב פעיל) גורם לעיכוב של מעכב התרגום4E-BP1,שמעכב את פקטור אתחול התרגוםeIF4Eהחיוני לתהליך התרגום. כך שלמעשה, Akt מוביל בסופו של דבר לאקטיבציה של mTORC1, וכתוצאה מכך לעיכוב של 4E-BP1 ולאקטיבציה של eIF4E, שמקדם תרגום של חלבוני מטרה רבים, בהם אלו המקודדים לציקלין D1ול-c-myc.[12]

Akt, אם כן, מבקר תהליכי שגשוג תאי על ידי מספר רב של מסלולים ביוכימיים משלימים במורד הזרם שלו, בדומה לאופן בו הוא מבקר גם את תהליכי ההישרדות והגדילה התאית.

Akt משחק תפקיד חשוב הן בקידוםאנגיוגנזהפיזיולוגית (נורמלית) והן בקידום אנגיוגנזה פתולוגית (במצבי מחלה), באמצעות השפעה על תאיםאנדותליאלייםוכן על תאים מייצרי אותות להיווצרות אנגיוגנזה (כגון תאים סרטניים). בתאים אנדותליאליים, מסלול ה-PI3K-Akt מאוקטב על ידי גורם הגידול VEGF. כאשר Akt מזרחן את חלבוני המטרה שלו, הוא תורם להישרדות, גדילה ושגשוג של תאי האנדותל. בנוסף, Akt מאקטב גם את החלבוןeNOS(‏endothelial nitric oxide synthase) באמצעות זרחון ישיר באתר Ser1177. השחרור של החנקן החמצניהמיוצר על ידי eNOS יכולה להמריץוזודילטציה(הרחבת כי דם), עיצוב צורה מחדש של כלי הדם (remodeling) ואנגיוגנזה.[13]

כמו כן, מסלולי מעבר אותות שמפעיל Akt מביאות גם לביטוי מוגבר של פקטורי השעתוקHIF1Aו-HIF2A,לפחות באופן חלקי, באמצעות פעילות של mTORC1. כאשר מתרחשת אקטיבציה של HIF1A בתאים אנדותליאליים ובתאים נוספים אחרים, הדבר גורם לביטוי ולהפרשה של VEGF ושל פקטורים אנגיוגניים אחרים.[13]

ב-2 אופנים אלו, Akt מקדם תהליכי אנגיוגנזה באמצעות מסלולי אותותאוטוקרינייםופרקריניים.

מטבוליזם תאי

[עריכת קוד מקור|עריכה]

בתגובה לגורמי גידול, Akt מפעיל מסלולי אותות שמבקרים ספיגת נוטריינטים לתוך התא באמצעות מגוון חלבוני מטרה. אחד מהתפקידים הפיזיולוגיים המשמעותיים ביותר של Akt הוא זירוז ספיגתגלוקוזבתגובה לאינסולין.Akt2, האיזופורם המרכזי שקיים ברקמות שמגיבות לאינסולין, נקשר לבועיותהמכילותGlut4,ואקטיבציה של Akt2 מובילה לטרנסלוקציה של Glut4 לממברנת התא. על אף שהמנגנון באמצעותו הדבר מתרחש אינו ברור די צרכו עדיין, מסתבר שהחלבוןAS160(שהוא בעל פעילות GAP על חלבונים ממשפחתRab) הוא חלבון מטרה מרכזי של Akt2 שמעורב בתהליך. Akt מזרחן את AS160 ב-5 אתרים שונים, כאשר החשובים שבהם הם Ser588 ו-Thr642; כאשר חוקרים עשו מוטציות ל-2 האתרים אלו והחליפום בחומצת האמינואלנין,יכולת הטרנסלוקציה של Glut4 אל ממברנת התא כתגובה לאינסולין - נחסמה. כאשר Akt מזרחן את AS160, הוא מעכב את יכולת ה-GAP שלו, ודבר זה מאפשר לחלבוני GTPase ממשפחת ה-Rab להיות טעונים GTP ופעילים, וכך לזרז טרנסלוקציה של Glut4 לממברנת התא. קיימים גם מסלולים שאינם תלויים ב-AS160, באמצעותם Akt מבקר את תהליך הטרנסלוקציה של Glut4 לממברנת התא, למשל באמצעות הקינאזPIKfyve.[13]

Glut1 הוא הטרנספורטר העיקרי של גלוקוז לתוך התא ברוב סוגי התאים, ושלא כ-Glut4 - הבקרה על Glut1 נעשית בעיקר באמצעות שינויים ברמות הביטוי שלו. אקטיבציה של mTORC1, בין היתר באמצעות זרחון של TSC2 ושל PRAS40 על ידי Akt, יכולה להביא הן לשעתוק תלוי-HIF1A של הגן Glut1 והן לתרגום של ה-mRNA של Glut1 (באמצעות eIF4E). ניתן לראות לעיתים קרובות ברקמות סרטניות אקטיבציה של מסלול PI3K-Akt והצטברות של HIF1A, ונראה שזהו אחד ההסברים לרמות הגבוהות של Glut1 ולספיגה המוגברת של גלוקוז הנצפים בגידולים סרטניים.[13]

אקטיבציה של Akt יכולה לחולל שינויים גם במטבוליזם שלליפידיםוגלוקוז בתוך התאים. לאחר כניסתו לתוך התא, גלוקוז מזורחן לגלוקוז-6-פוספטבאמצעות האנזיםהקסוקינאז.גלוקוז-6-פוספט יכול להיות מאוחסן בתא כגליקוגןאו להיכנס למסלול הגליקוליזה,ול-Akt יש את היכולת לבקר את 2 המסלולים האלו.

ייצוא RNA מגרעין התא

[עריכת קוד מקור|עריכה]

סוגים רבים של RNA מיוצאים מגרעין התא, בהםtRNA,‏mRNA,‏sRNAו-rRNA.שחקן מרכזי בייצוא ה-RNA מגרעין התא לציטופלזמה הוא החלבוןALYREF,שמגויס ונקשר ל-mRNA בשלב השחבור החליפי. כאשר הזריקו נוגדנים ל-ALYREF, יכולת ייצוא ה-mRNA מגרעין התא נחסמה, מבלי לפגוע במנגנוני שינוע אחרים. ALYREF עובר לוקליזציה ל-nuclear speckles, ושם נקשר ל-PIP3. ‏Akt מזרחן את ALYREF באתר Thr219, וזרחון זה הוא חיוני לקישורו ל-PIP3.

כאשר הורידו את רמת הביטוי של ALYREF באמצעות שימוש ב-siRNA,פחתה יכולת ייצוא ה-mRNA מגרעין התא לציטופלזמה וכן פחתה יכולת הפרוליפרציה (שגשוג) התאית. באופן זה, זרחון של ALYREF הוא מנגנון נוסף באמצעותו יכול Akt לבקר תהליכים בתא - על ידי דחיפה לייצוא mRNA של גנים המקודדים לחלבונים המעורבים בבקרה של מחזור התא, מגרעין התא לתרגום בציטופלזמה.[14]

חשיבות קלינית

[עריכת קוד מקור|עריכה]

Akt במחלת הסרטן

[עריכת קוד מקור|עריכה]

מסלול PI3K/AKT הוא מסלול מעבר האותות שבו קיים מספר המוטציות הרב ביותר בגידולים סרטניים אצל בני אדם, בלמעלה מ-40% מכלל סוגי הגידולים השונים. לעיתים קרובות Akt2 עובר אמפליפיקציה (או: ביטוי ביתר) בגידולים הסרטניים השונים, כך שרמת פעילותו גבוהה יותר - אצל 16% מחוליסרטן הלבלב,13% מחולותסרטן השדו-5-10% מחולי סרטןהשחלה,הריאותושלפוחית השתן.לעומת זאת, Akt1 עובר אמפליפיקציה בשיעור נמוך יותר בסוגי הסרטנים השונים - אצל 20% מחולי סרטןערמוניתנוירואנדוקריני (NPEC),‏ 10% מחולי סרטן הלבלב ו-3-5% מחולות סרטן השד וסרטן שחלות נסיובי.אמפליפיקציה של Akt3 מתרחשת בשיעור גבוה בקרב חולות סרטן השד, וכן בקרב 25% מחולי סרטן ערמונית נוירואנדוקריני.[15]

באשר למוטציות ב-Akt, האיזופורם שעובר מוטציות בצורה התדירה ביותר הוא Akt1; המוטציה הבולטת ביותר בו היא Akt1E17K,שבה מוחלפתחומצה גלוטמיתבליזין,בכיס שתפקידו לקשור ליפידים ב-Akt1. כתוצאה מכך, מתבצעת לוקליזציה פתולוגית לממברנת התא ולכן אקטיבציה קונסטיטוטיבית (קבועה) של מסלול האיתות של Akt1. מוטציה זו נפוצה בעיקר בסרטן השד,סרטן צוואר הרחם,סרטן שלפוחית השתן ובסרטן הערמונית. לעומת זאת, ב-Akt2 כמעט ואין מוטציות שגורמות לפעילות יתר שלו, לפחות על פי הידוע עד כה.[15]

דרך נוספת שיכולה לגרום לעלייה ברמת הפעילות של Akt היא באמצעות החלבונים שנמצאים במעלה הזרםאליו ומבקרים את פעילותו, כדוגמת PTEN, PHLPP, ו-PP2A. לדוגמה, מוטציות בחלבון PTEN (בקר שלילי של Akt) הגורמות לאיבוד הפונקציונליות של PTEN, ועל כן לפעילות קבועה של Akt, נפוצות בסרטן רירית הרחם,בסרטן הערמונית ובגליובלסטומה.[16]

לקריאה נוספת

[עריכת קוד מקור|עריכה]
  • Brazil, D. P., Park, J., & Hemmings, B. A. (2002). PKB binding proteins: getting in on the Akt. Cell, 111(3), 293-303.
  • Brown, Jessica S., and Udai Banerji. "Maximising the potential of AKT inhibitors as anti-cancer treatments."Pharmacology & therapeutics172(2017): 101-115.
  • Hanada, M., Feng, J., & Hemmings, B. A. (2004). Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1697(1-2), 3-16.
  • Jahn, T., Seipel, P., Urschel, S., Peschel, C., & Duyster, J. (2002). Role for the adaptor protein Grb10 in the activation of Akt.Molecular and cellular biology,22(4),979-991.
  • Manning, Brendan D., and Lewis C. Cantley. "AKT/PKB signaling: navigating downstream."Cell129.7(2007): 1261-1274.
  • Martelli, Alberto M., et al. "The emerging multiple roles of nuclear Akt."Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1823.12(2012): 2168-2178.
  • Yu, Haixiang, Trevor Littlewood, and Martin Bennett. "Akt isoforms in vascular disease."Vascular pharmacology71(2015): 57-64.

הערות שוליים

[עריכת קוד מקור|עריכה]