לדלג לתוכן

שריר הלב

מתוך ויקיפדיה, האנציקלופדיה החופשית
שריר הלב
שיוך לבעריכת הנתון בוויקינתונים
תיאור ב האנציקלופדיה הסובייטית הגדולה (1926–1947)עריכת הנתון בוויקינתונים
מזהים
לטינית (TA98) myocardiumעריכת הנתון בוויקינתונים
טרמינולוגיה אנטומיקה A12.1.06.001עריכת הנתון בוויקינתונים
TA2 (2019) 3950עריכת הנתון בוויקינתונים
FMA 9462עריכת הנתון בוויקינתונים
קוד MeSH A02.633.580עריכת הנתון בוויקינתונים
מזהה MeSH D009206עריכת הנתון בוויקינתונים
מערכת השפה הרפואית המאוחדת C0027061עריכת הנתון בוויקינתונים
לעריכה בוויקינתונים שמשמש מקור לחלק מהמידע בתבנית
רקמת שריר הלב

שריר הלבאנגלית:myocardium) הוא אחד משלושת סוגי השרירוהוא הרקמההמרכזית ממנה עשויהלב.רקמה זו נמצאת בין הרקמה החיצונית של הלב,עילית הלב,לבין הרקמה הפנימית,פנים הלב,ומקבלת אספקתדםמהעורקים הכליליים.

רקמות הלב

הרקמה המרכזית ממנה עשוי לב האדם היא רקמת שריר הלב. לב האדם עשוי מ-3 שכבות, כששריר הלב נמצא בין השכבה הפנימית, פנים הלב, לבין הרקמה החיצונית, עילית הלב[1].הרקמה מחולקת לשכבות העשויות מתאי שריר לב (באנגלית: cardiomyocytes) המאוגדים יחד בקבוצות הקשורות ביחד בסיביקולגן.כשהשכבות של שריר הלב מתכווצות בתיאום, הן מסוגלות לגרום לכיווץ של השריר בכמה כיוונים במקביל - לאורך, לרוחב ובסיבוב, על מנת להוציא את הכמות המקסימלית של דם מתוך החלל בלב אותו עוטף השריר[2].

שריר הלב

שריר הלב עשוי מסיבים הבנויים ממספר רב של תאי שריר לב המוקפים בנוזל בין-תאיהמיוצר על ידיפיברובלסט.שריר הלב כולל בתוכו גם תאים המסייעים בהעברת דחף חשמלי כחלק ממערכת ההולכה החשמלית של הלבוכלי דםהמספקים מזון וחמצן לתאים, העורקים והורידים הכליליים ונימים.כיווץ שריר הלב דורש אנרגיה רבה ולכן דורש אספקת דם קבועה על מנת לספק לשרירחמצןוחומרי מזון. אספקת הדם ללב מגיעה מהעורקים הכליליים שיוצאים משורשאבי העורקיםועוברים בין שכבת כיס הלב לשכבת שריר הלב. הדם משריר הלב מתנקז לורידים הכלילייםונשפך לעלייה הימנית[1].

התכווצות תאי שריר הלב גורמת להתכווצות הלב ותיאום נדרש בין קבוצות תאים שכנים על מנת ליצור התכווצות יעילה של השריר. מצב בו יש פגיעה במנגנון התיאום של ההתכווצות עלול להיווצר במהלךהפרעות קצבשונות[3].בהסתכלות מיקרוסקופית, תא שריר הלב נראה כמבנה דמוי מלבן בגודל 100–150מיקרוןעל 30–40 מיקרון[4].תאי שריר הלב מחוברים על ידי דיסק בין-תאי ויוצרים סיבי שריר ארוכים. כל תא שריר כולל סיבוני שריר שהם סיבים חלבוניים שמחליקים אחד על השני ובכך גורמים להתכווצות ולהתרחבות התא. סיבוני השריר עשויים מסרקומרים,כוללאקטיןומיוזין,שהם יחידות הכיווץ הבסיסיות ביותר בתא. הסידור האופייני של סיבוני השריר נותן לתא שריר הלב מראה דמוי תאשריר שלד[5].

תאי שריר לב מכילים צינוריות T (באנגלית: T-tubules), צינוריות המסייעות ליעילות התכווצות השרירים. צינוריות אלו נפגשות במרכז התא ויוצרת רשת של צינורות בתוכו עד אשר יוצאות מחוץ לממברנה ומשמשות כהמשך שלממברנת התא.הצינוריות עשויות מדו-שכבה ליפידיתוגדולות ורחבות יותר בתא שריר לב מאשר בתא שריר שלד, אך מעטות יותר במספרן. תפקידי הצינוריות הוא העברה מהירה שלסידןלמרכז התא ובכך ויסות של ריכוזו בתא, בכך משמשות תפקיד חשוב בתהליך ההולכה החשמלית של התא וכיווצו[5][4][6].

רוב תאי שריר הלב מכיליםגרעיןאחד, אם כי חלקם יכולים להכיל עד 4 גרעיני תא, בשונה מתא שריר שלד שכולל בתוכו מס' רב של גרעיני תא. תאי שריר לב מכיליםמיטוכונדריהרבים על מנת לספק את האנרגיה הרבה הדרושה מתא שריר הלב, מה שהופך אותם לבעלי סיבולת גבוהה[5][4].בין תאי השריר ישנם דיסקים (intercalated discs) המאפשרים מעבר מהיר שלדחף עצבילאורך מערכת תאי שריר הלב ותיאום בין תאי השריר. בין הדיסקים ישנההתנגדות חשמליתנמוכה מאוד, המאפשרת מעבר חופשי של יונים בין התאים[7].

פעימת תא שריר לב בודד

הפיזיולוגיה של תאי שריר לב דומה מאוד לפיזיולוגיה של תאי שלד. התפקוד העיקרי של שני הסוגים הוא להתכווץ ובשניהם הכיווץ מתחיל בזרימה אופיינית של יונים לאורך ממברנת התא הידוע כפוטנציאל פעולה. פוטנציאל הפעולה משפעל כיווץ שרירי על ידי העלאת ריכוז יוני הסידן בציטופלזמהשל התא. למרות זאת, בשונה מתא שריר שלד, בתא שריר לב פוטנציאל הפעולה מורכב מזרימה פנימה לתא של סידן ונתרן. הכניסה של יוני הנתרן מהריה אך קצרה מאוד וזרימת יוני הסידן מושהת ואיטית יותר.

בזמן כיווץ תא השריר, סיבוני תא השריר העשויים מחלבונים מחליקים זה על זה לאורך תא השריר. ישנם שני סוגי סיבוני שריר, סיבונים עבים הבנויים ממיוזיןוסיבים דקים העשויים מאקטין,טרופוניןוטרופומיוזין.עם התכווצות תא השרירי והחלקת הסיבונים אחד על השני, התא נעשה קצר יותר ושמן יותר. במהלך ההתכווצות, יוני הסידן נצמדים לחלבוני הטרופונין, שנמצאים לאורך חלבוני הטרופומיוזין, ועם הצמדות זו הם זזים וחושפים אתרי קישור על האקטין. המיוזין שנמצא על הסיבים הדקים מתחבר לאתרי הקישור על האקטין ומושך את הסיבונים הארוכים לאורך הסיבים הדקים, תהליך שגורם להתכווצות התא. כשריכוז סיבי הסידן יורד, סיבי הטרופומיוזין מסתירים שוב את אתרי הקישור ותא השריר מתרחב חזרה.

עד לאחרונה, תאי שריר נחשבו לתאים שלא מתחדשים, אך ממצאים מהשנים האחרונות הראו שישנה התחדשות מסוימת של תאי שריר הלב[8].דרך אחת להתחדשות התאים היא על ידי חלוקת תאים רגילה של תאים קיימים[9].חלוקה זו נצפתה באופן מוגבר סמוך בתאי שריר לב סמוך לאתרים עם פגיעה בשריר הלב. נוסף על כך, גורמי גדילה (growth factors) מסוימים נמצאו כגורמים לחידוש תאי שריר לב ותאי גזע לבביים[10].

שריר הלב מכסה את העליות והחדרים של הלב. אף על פי שהרקמה ביניהם זהה יחסית, השכבה שמקיפה את החדרים גדולה יותר ועוצמתית יותר מאשר של העליות. נוסף על כך, תאי שריר לב בחדרים ארוכים ורחבים יותר עם רשת צינוריות T צפופה יותר. אף על פי שמנגנון הסידן בתא יחסית זהה בין העליות לחדרים, שלב כניסת הסידן לתא מצומצם יותר וחולף מהר יותר[11].

משמעות קלינית

[עריכת קוד מקור|עריכה]

תחלואה הקשורה לשריר הלב כוללתקרדיומיופתיהובעיות באספקת הדם לשריר כמותעוקת לבואוטם שריר הלב.מחלות המשפיעות על שריר הלב הן בעלות משמעות קלינית משמעותית והם גורם מוות עיקרי במדינות המערב[12].התחלואה הנפוצה ביותר המשפיעה על שריר הלב היאמחלת לב איסכמית,מחלה בה ישנה ירידה באספקת הדם לשריר הלב. במחלת לב איסכמית, העורקים הקורונריים מפתחיםטרשת עורקיםכלילית ובמצבים חמורים של טרשת עלולים לגרום לתעוקת חזה[13].לרוב, מצב רפואי זה גורם לכאב בחזה במאמץ שחולף במנוחה. במצבים חמורים בו העורקים הכלילים כבר צרים מאוד או חסומים, ישנה ירידה משמעותית באספקת הדם לשריר הלב ומצב זה נקרא אוטם שריר הלב[14].אוטם שריר הלב עלול בטווח המיידי לפגוע באספקת הדם לשאר רקמות הגוף וכך לאיבוד הכרה ואף תמותה. נוסף על כך, במצב בו אוטם שריר הלב לא מטופל במהירות, עלולה להיווצר התנוונות של השריר באזור שלא קיבל אספקת דם, מצב העלול לגרום לנזק ארוך טווח משמעותי[15].מצב קליני כרוני בו הלב איננו מסוגל לספק את הדרישות המטבוליות של האיברים השונים בגוף מכונהאי-ספיקת לב.

פגיעה אפשרית נוספת בשריר הלב היאדלקת שריר הלב,הנגרמת לרוב מזיהום נגיפיולעיתים כמחלה אוטואימוניתעל ידימערכת החיסוןעצמה[16][17][18].שריר הלב עלול להינזק גם מצריכת אלכוהול,יתר לחץ דםקבוע ומתמשך והפרעות קצב מתמשכות[19].סוג נוסף של מחלות של שריר הלב מכונות קרדיומיופתיה שיכולות לגרום לשריר הלב להיות קטן מהרגיל, גדול מהרגיל או נוקשה מהרגיל וחלקן יכול לכלול מרכיב תורשתי-גנטי[20][21][22][23].

קישורים חיצוניים

[עריכת קוד מקור|עריכה]
ויקישיתוףמדיה וקבצים בנושאשריר הלבבוויקישיתוף

הערות שוליים

[עריכת קוד מקור|עריכה]
  1. ^12S., Sinnatamby, Chummy (2006). Last's anatomy: regional and applied. Last, R. J. (Raymond Jack). (11th ed.). Edinburgh: Elsevier/Churchill Livingstone
  2. ^Stöhr, Eric J.; Shave, Rob E.; Baggish, Aaron L.; Weiner, Rory B. (2016-09-01). "Left ventricular twist mechanics in the context of normal physiology and cardiovascular disease: a review of studies using speckle tracking echocardiography". American Journal of Physiology. Heart and Circulatory Physiology. 311 (3): H633–644.
  3. ^The ESC textbook of cardiovascular medicine. Camm, A. John., Lüscher, Thomas F. (Thomas Felix), Serruys, P. W., European Society of Cardiology. (2nd ed.). Oxford: Oxford University Press. 2009.
  4. ^123M., Bers, D. (2001). Excitation-contraction coupling and cardiac contractile force (2nd ed.). Dordrecht: Kluwer Academic Publishers.
  5. ^123(Pathologist), Stevens, Alan (1997). Human histology. Lowe, J. S. (James Steven), Stevens, Alan (Pathologist). (2nd ed.). London: Mosby.
  6. ^Hong, TingTing; Shaw, Robin M. (January 2017). "Cardiac T-Tubule Microanatomy and Function". Physiological Reviews. 97 (1): 227–252.
  7. ^Jahangir Moini; Professor of Allied Health Everest University Indialantic Florida Jahangir Moini (4 April 2011). Anatomy and Physiology for Health Professionals. Jones & Bartlett Publishers. pp. 213–.
  8. ^Bergmann O, Bhardwaj RD, Bernard S, et al. (April 2009). "Evidence for cardiomyocyte renewal in humans". Science. 324 (5923): 98–102
  9. ^Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerguin-Kern JL, Lechene CP, Lee RT (January 2013). "Mammalian heart renewal by pre-existing cardiomyocytes". Nature. 493 (7432): 433–6.
  10. ^Germani A, Di Rocco G, Limana F, Martelli F, Capogrossi MC (March 2007). "Molecular mechanisms of cardiomyocyte regenerate and therapeutic outlook". Trends Mol Med. 13 (3): 125–33.
  11. ^Walden, A. P.; Dibb, K. M.; Trafford, A. W. (April 2009). "Differences in intracellular calcium homeostasis between atrial and ventricular myocytes". Journal of Molecular and Cellular Cardiology. 46 (4): 463–473.
  12. ^Walden, A. P.; Dibb, K. M.; Trafford, A. W. (April 2009). "Differences in intracellular calcium homeostasis between atrial and ventricular myocytes". Journal of Molecular and Cellular Cardiology. 46 (4): 463–473.
  13. ^Walden, A. P.; Dibb, K. M.; Trafford, A. W. (April 2009). "Differences in intracellular calcium homeostasis between atrial and ventricular myocytes". Journal of Molecular and Cellular Cardiology. 46 (4): 463–473.
  14. ^Walden, A. P.; Dibb, K. M.; Trafford, A. W. (April 2009). "Differences in intracellular calcium homeostasis between atrial and ventricular myocytes". Journal of Molecular and Cellular Cardiology. 46 (4): 463–473.
  15. ^Walden, A. P.; Dibb, K. M.; Trafford, A. W. (April 2009). "Differences in intracellular calcium homeostasis between atrial and ventricular myocytes". Journal of Molecular and Cellular Cardiology. 46 (4): 463–473.
  16. ^Cooper, Leslie T. (2009-04-09). "Myocarditis". The New England Journal of Medicine. 360 (15): 1526–1538
  17. ^Rose, Noel R. (July 2016). "Viral myocarditis". Current Opinion in Rheumatology. 28 (4): 383–389.
  18. ^Bracamonte-Baran, William; Čiháková, Daniela (2017). "Cardiac Autoimmunity: Myocarditis". Advances in Experimental Medicine and Biology. 1003: 187–221.
  19. ^Ponikowski, Piotr; Voors, Adriaan A.; Anker, Stefan D.; Bueno, Héctor; Cleland, John G. F.; Coats, Andrew J. S.; Falk, Volkmar; González-Juanatey, José Ramón; Harjola, Veli-Pekka (August 2016). "2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC". European Journal of Heart Failure. 18 (8): 891–975.
  20. ^Liew, Alphonsus C.; Vassiliou, Vassilios S.; Cooper, Robert; Raphael, Claire E. (2017-12-12). "Hypertrophic Cardiomyopathy-Past, Present and Future". Journal of Clinical Medicine. 6 (12).
  21. ^Japp, Alan G.; Gulati, Ankur; Cook, Stuart A.; Cowie, Martin R.; Prasad, Sanjay K. (2016-06-28). "The Diagnosis and Evaluation of Dilated Cardiomyopathy". Journal of the American College of Cardiology. 67 (25): 2996–3010.
  22. ^Garcia, Mario J. (2016-05-03). "Constrictive Pericarditis Versus Restrictive Cardiomyopathy?". Journal of the American College of Cardiology. 67 (17): 2061–2076.
  23. ^Towbin, Jeffrey A. (2014). "Inherited cardiomyopathies". Circulation Journal: Official Journal of the Japanese Circulation Society. 78 (10): 2347–2356.

הבהרה:המידע בוויקיפדיה נועד להעשרה בלבד ואינו מהווה ייעוץ רפואי.