Ugrás a tartalomhoz

Madarak

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából
Madarak
Evolúciós időszak:Késő kréta–Jelen
[1]
A madárvilág változatossága
A madárvilág változatossága
Rendszertani besorolás
Ország: Állatok(Animalia)
Törzs: Gerinchúrosok(Chordata)
Altörzs: Gerincesek(Vertebrata)
Csoport: Hüllőszerűek(Sauropsida)
Osztály: Madarak(Aves)[2]
Rendek

30rend,több mint 9900 ismertfaj

Hivatkozások
Wikifajok
Wikifajok

AWikifajoktartalmazMadaraktémájú rendszertani információt.

Commons
Commons

AWikimédia CommonstartalmazMadaraktémájú médiaállományokat ésMadaraktémájú kategóriát.

Amadarak(Aves)meszes héjú tojással szaporodó,melegvérűgerincesállatok.Mellső végtagjaik szárnyakká módosultak. Járólábaik vannak, melyeken megtalálható a jellegzetes csüd (lábtő és lábközépcsontok összenövése), amely elősegíti a landolást. Szegycsontjuk tarajos, melyhez erős mellizmok tapadnak, így segítve a repülést. A madárfajok nagy része ma is repülő életmódot folytat. Testükettolltakaróborítja, csontjaik üregesek, légzsákokat tartalmaznak; ettől erősek, de könnyűek. Fogak helyettcsőrükvan. Méretük az 5 cm-esméhkolibritőla 2,75 m-esstruccigterjed.

A legrégebbi ismert madárszerű faj azArchaeopteryx(ősgyíkmadár), amelynek csőre, karma, tolla, a lábán szarupikkelyek voltak (korábban ezt a fajt is azAvialaecsoportba sorolták, ahogy aTheropodákatis, de azóta nem tekintik a madarak ősének). Őseik aTheropodadinoszauruszokManiraptorakládjába tartozó állatok voltak, ezáltal az utolsó fennmaradt dinoszauruszoknak tekinthetők. Legközelebbi élő rokonaik akrokodilok.A madarak mintegy 10 ezer fajjal a gerincesek második legnépesebbosztálya.Ennek több mint fele énekesmadár. EbbőlMagyarországonközel 400 faj fordul elő.

A legtöbb faj szociálisan monogám, még akkor is, ha a párok nem mindig hűségesek. A párkapcsolat többnyire egy tenyészszezonra szól, néha több évig is eltart, de élethosszig ritkán. Néhány faj poligám, ezek lehetnek poligün fajok (egy hím, több nőstény), vagy poliandriát gyakorlók (egy nőstény, több hím). A nőstényeket tojóknak nevezik. Tojásait a legtöbb faj fészekbe rakja, de azok a fajok is saját testmelegükkel költik ki fiókáikat, amelyek nem építenek fészket. A legtöbb faj kikelés után még továbbgondozza fiókáit. Aházi tyúkképes megtermékenyítetlen tojásokat is tojni.

Több madárfaj is fontos azemberszámára; ezek egy része háziasított. Táplálékot (hús, tojás) és nyersanyagot (toll) biztosítanak. Egyes fajokat házikedvencként tartanak. Egyes fajok ürülékével trágyáznak (guanó). Az ember tevékenysége miatt a17. századigtöbb száz, a 17. századtól 100-120 faj halt ki, és további 1200 faj veszélyeztetett. Megfigyelésük az ökoturizmus fontos része.

Törzsfejlődés

[szerkesztés]

Rokonság

[szerkesztés]
Kőlap fosszilis csontokkal és tollenyomatokkal
AzArchaeopteryx lithographicafajt gyakran tekintik a legrégibb valódi madárnak

A madarakat előszörFrancis Willughbyés John Ray rendszerezte 1676-ban kiadottOrnithologiaeművükben.[3]Carl Linnaeus ezt felhasználva alkotta meg saját rendszerét 1758-ban.[4]Az ő nyomán a madarakat osztályként tartják nyilván,filogenetikailaga Theropoda kládba sorolhatók.[5]

A madarak és testvércsoportjuk, a krokodilok az Archosauria klád ma is élő tagjai. Az 1990-es évek végéig azArchaeopteryx lithographicaösszes utódját a madarak közé sorolták.[6]Jacques Gauthier inkább csak a modern madarakat tekintette valódi madárnak, és a csak fosszíliákból ismert fajokat a madarakkal együtt a bővebbAvialaecsoportba sorolta.[7]Ezzel elkerülte az Archaeopteryx körüli bizonytalanságot. A 21. században ez az osztályozás terjedt el.

Gauthier[8]négyféle meghatározást adott a madarakra. Ezzel azonban az a probléma, hogy nem ugyanazok a fajok tartoznak oda. Továbbá azt javasolta, hogy a madarakat a ma élő összes madár közös ősétől számítsák. Az általa meghatározott csoportok:

  • tollas archosaurusok (Avifilopluma)
  • röpképes archosaurusok (Avialae)
  • azok az archosaurusok, amelyek közelebb állnak a ma élő madarakhoz, mint a krokodilokhoz (Avemetatarsalia[=Paraves])
  • a ma élő madarak legközelebbi közös ősének leszármazottai (Neornithes)



Krokodilok



Madarak




Teknősök




Gyíkok,beleértve akígyókat(pikkelyes hüllők)


A madarak filogenetikai rokonsága a ma is élő hüllőkkel

A negyedik definíció szerint az Archaeopteryx nem tartozik a madarak közé. Gauthier javaslatát a legtöbb paleontológus és a madarak evolúciójával foglalkozó szakértők is elfogadták, habár pontos meghatározás nincs. A kutatók gyakran az Avialae tudományos névvel illetett csoportot nevezik madaraknak.[9]

Az Avialae a legtöbb kutató szerintág-alapú klád,habár a meghatározások eltérnek egymástól. Sok szerző értelmezésében azok a theropodák, amelyek közelebb állnak a madarakhoz, mint aDeinonychushoz.[10][11]Néha testi jellemzők alapján különítik el a kládot. Jacques Gauthier 2001-ben új definíciót adott: tollas lények, amik legalább siklórepülésre (voltak) képesek, köztük a tőlük leszármazó madarakkal.[8][12]

Kapcsolat a dinoszauruszokkal

[szerkesztés]
Paraves

Scansoriopterygidae




Eosinopteryx


Eumaniraptora

Jinfengopteryx



Aurornis



Dromaeosauridae



Troodontidae



Avialae





Kladogram Cauet al.,2015 filogenetikai eredményei alapján[13]

A madarak azArchosauriákfejlődési irányához tartozóhüllőmedencéjű dinoszauruszok(Saurischia)egy csoportjának (Theropoda) ágából alakultak ki. A valódi madarak akréta korban,100 millió évvel ezelőtt jelentek meg.[14]DNS-elemzések szerint nagyobb mértékben a többi dinoszaurusz kihalása után terjedtek el a déli kontinensről világszerte. Fajszámuk különösen a globális jégkorszakok alatt gyarapodott.[15]Primitív madárszerű dinoszauruszok a középsőjuráigvisszakövethetők. Atollas dinoszauruszokbólalakult ki a legkorábbi ismert madárszerű lény, azArchaeopteryx.Ezek még nem repültek jól, és őseik testfelépítéséből még megőrizték a fogakkal teli állkapcsot, és a hosszú csontos farkat.[16][17]

A fosszíliák tanúsága és a biológiai bizonyítékok miatt a legtöbb tudós a madarakat specializálódott theropodáknak tartja.[18]Speciálisabban, aManiraptoraklád része; ide tartoznak többek között adromaeoszauridákés azoviraptoridákis.[19]Ahogy egyre több, madárhoz hasonló theropoda került elő, elmosódtak a határok a madarak és rokonaik között. Északkelet-Kínában Liaoning tartományban a sok apró tollas theropoda került elő, ami tovább növelte a kétséget.[20][21][22]

Fehér kőlap törésekkel és madártollak és csontok lenyokatával, köztük hosszú páros faroktollakkal
Confuciusornis sanctus,egy kréta kori madár Kínából

A paleontológia 2010-es évekbeli állása szerint a repülő theropodák, azazmadárszárnyúak(Avialae) adeinonychoszauruszoklegközelebbi rokona, és magukba foglalják adromaeoszauridákatés atroodontidákatis.[23]Ezek együtt alkotják a Paraves csoportját. Több emblematikus tag, mint a Microraptor, olyan jellemzőkkel bír, amelyek lehetővé tették számukra legalább a siklórepülést. A legtöbb emblemetaikus tag kis termetű volt. Ez felveti azt a lehetőséget, hogy a paravianok közös őse fán élt, és képes volt a siklórepülésre.[24][25]AzArchaeopteryxtől és a többi theropodáktól eltérően az első madárszárnyúak (Avialae) nem ragadozók vagy dögevők, hanem mindenevők voltak.[26]

AzArchaeopteryxa19. századbanaz egyik megkerült hiányzó láncszemnek és az evolúció egyik bizonyítékának számított. Ez volt az első lelet, amin látszódtak még a hüllők jellegzetességei: fogak, karmos mellső ujjak, hosszú, hüllőszerű farok, és a modern madarakhoz hasonló tollas szárnyak. Ma már nem tekintik a madarak közös ősének, de hozzá közel állónak igen.[27]

Az első madárszerű állatok

[szerkesztés]
Avialae

Anchiornis




Archaeopteryx




Xiaotingia




Rahonavis





Jeholornis



Jixiangornis



Euavialae

Balaur


Avebrevicauda

Zhongjianornis




Sapeornis


Pygostylia

Confuciusornithiformes





Protopteryx



Pengornis




Ornithothoraces












Kladogram Cauet al.,2015 filogenetikai eredményei alapján[13]

A legkorábbi avialan fosszíliákat Kínában, a Tiaojishan Formációban fedezték fel, és a jura szakaszára datálták, 160 millió évvel ezelőttre.[9]Az ismert akkori avialan fajok: Anchiornis huxleyi, Xiaotingia zhengi, és Aurornis xui. A jól ismert Archaeopteryx valamivel későbbi, 155 millió éves, és Németországban találták. Az ősi, dinoszauruszokra utaló jegyek mellett még további jellegzetességeik voltak, mint a második lábujj karma, ami sosem érintette a földet; és a hosszú tollak, amikkel a levegőben manővereztek.[28]

AzAvialaefajokból sok különböző forma alakult ki akréta korban.[29]Több csoport megtartotta a korai jegyeket, míg más csoportok elvesztették ezek egyikét-másikát. Így például aPygostyliacsoportban megrövidült a farok, és létrejött a pygostyl csont.[29]A késői krétában 95 millió évvel ezelőtt a modern madarak őseinek megjavult a szaglása.[30]

A korai madárősök sokfélesége

[szerkesztés]
Ornithothoraces

Enantiornithes


Euornithes

Archaeorhynchus


Ornithuromorpha

Patagopteryx



Vorona




Schizooura




Hongshanornithidae




Jianchangornis




Songlingornithidae




Gansus




Apsaravis


Ornithurae

Hesperornithes




Ichthyornis




Vegavis



Aves














Egyszerűsített mezozoós madár filogenia Wang et al. szerint, 2015-ös filogenetikai elemzés alapján[31]

A rövid farkúakból kialakultak az enantiornithesek, melyek vállcsontjainak szerkezete fordított volt a modern madarakéhoz képest. Ők voltak az első változatos csoport a rövid farkúak közül. Sokféle ökológiai nichét foglaltak el, a homokban gázolóktól és halevőktől a falakó magevőkig. A kréta korban ők voltak a legelterjedtebb madárszerűek, azonban a kor végén kihaltak.[29]

A másik ág, az Euornithes vízi vagy félig vízi életmódot folytattak, halakkal és más kisebb vízi élőlényekkel táplálkoztak; gázló, úszó és búvár fajaik voltak. Ide tartoztak a sirályszerű Ichthyornis,[32]és a röpképtelenné vált Hesperornithiformes, amelyek tengerekben halásztak.[29]Az enantiornithesek ezzel szemben a szárazföldön terjedtek el.[33]A modern madarak irányába mutat a csőr kifejlődése és a fogak elvesztése, habár voltak csoportjaik, amelyek megőriztek néhány hátsó fogat.[34]Emellett mellcsontjukon taraj alakult ki. Farkcsontjuk mozgékonnyá vált, amivel a farok is szabadabban mozgott,[35]és lehetővé tette a repülés közbeni manőverezést.[28]

Modern madarak

[szerkesztés]
Aves
Palaeognathae

Struthioniformes



Tinamiformes



Neognathae

Tarajos szegycsontúak (Neoaves)


Galloanserae

Anseriformes



Galliformes





A modern madarak főbb csoportjai
Sibley-Ahlquist taxonómiájaszerint

A modern madarakat és őseiket az Aves, más névenNeornithesnéven foglalják össze, aminek két ága van: (1)Futómadár-szabásúak(Palaeognathae), ahova az olyan röpképtelen madarak tartoznak, mint astruccalakúak(Struthioniformes) rendje, és az olyan rosszul repülők, mint atinamualakúak(Tinamiformes) rendje; és (2) atarajos szegycsontúak(Neognathae), ahová a többi madarat sorolják.[5]Ezeket többnyire nagyrendnek vagy alosztálynak tekintik,[36]de Livezey és Zusicohorsként(raj)tartja számon.[5]A rendszertani nézőponttól függően a modern madarak ismert fajainak száma 9800[37]és 10 050 között változik.[38]

Arécefélékcsaládjába tartozó késő krétában éltVegavisfaj leletei alapján a madarak már akréta korvégén több ágra váltak szét.[39]Alaktani elemzések szerint a modern madarak valamivel a legkorábbi fosszíliák előtt, a kréta kor közepén jelentek meg.[16]

Az ágak közül először aGalloanseraevált le, ami alúdalakúakés atyúkalakúaköregrendje. Valószínűleg tőlük származik a valódi madarak első fosszíliája is 85 millió évvel ezelőttről, azAustinornis lentusfajtól.[40]Az újabb szétválások időpontjai vitatottak; a kutatók csak abban értenek egyet, hogy az első Galloanserae fajok a késő krétabeli dinoszauruszok kortársai voltak. Abban viszont nincs egyetértés, hogy a többi faj mikor és milyen úton terjedt el.[41]A bizonyítékok ellentmondásosak; a molekuláris elemzések szerint még a kréta kor végén, míg a leletek szerint csak a kainozoikum alatt; ez vitathatóvá teszi az összes eredményt.[41][42]Mindenesetre az újabb eredmények azt mutatják, hogy a kréta kor végi kihalást csak kevés faj élte túl, és ezekből származik a mai madarak egy népes csoportja.[43]

Elterjedésük

[szerkesztés]
Világosszürke begyű és hasú madár mintás szárnnyal és fejjel betonon áll.
Aházi verébelterjedési területe nagyot bővült az emberi tevékenység következtében[44]

A madarak jelen vannak a hét kontinens legtöbb szárazföldi élőhelyén, egészen ahóhojszaköltőtelepeiig, amelyek az Antarktiszon 440 kilométerre vannak a tengertől.[45]A fajok a trópusi területeken a legváltozatosabbak. Korábban úgy gondolták, hogy ennek oka az erősebb fajképződés, azonban azóta kiderült, hogy a fajképződés inkább a magasabb szélességeken gyorsabb, mivel ott nagyobb a fajkihalás is.[45]A szárazföldek mellett a vizeken is élnek, egyes családok még az óceánokban is előfordulnak. Némely tengerlakó faj csak költeni megy a partra,[46]és néhánypingvinfajakár 300 méterre is lemerül az óceánban.[47]

Sok madárfaj azembersegítségével terjedt el. Ez lehetett akaratlagos, vadnak (fácán)[48]vagy véletlen, elszabadult díszállatként, mint abarátpapagájÉszak-Amerika egyes városaiban.[49]Néhány faj hasznot húzott az ember tevékenységéből, így apásztorgém,[50]apásztorkarakara,[51]vagy arózsás kakadu,és elszaporodott a mezőgazdasági területeken[52]vagy a városokban.

Testfelépítés

[szerkesztés]

A madarak, bár igen változatos állatcsoport, testfelépítés szempontjából viszonylag egységesek. Más gerincesekhez képest több szokatlan jellegzetességgel bírnak, amelyek elsősorban a repülőképesség kialakulásához kapcsolódnak.

Idegrendszer, érzékelés

[szerkesztés]

A madarak központi idegrendszere viszonylag fejlett.[53]Az agy mozgással foglalkozó kérgében a repülést irányító rész a legnagyobb. A kisagy vezérli a pontos mozgásokat, míg a nagyagy a komplex viselkedésmintákat, például a tájékozódást, az udvarlást és a fészeképítést. Az idegrendszer egyes részeinek megnevezése új terminológiát igényelt, mivel a madáragy másként épül fel, mint azemlősöké.[54]Az 1990-es évek óta végzett vizsgálatok szerint a madarak értelmesebbek, mint ahogy azt korábban gondolták.

A madáragyra jellemző a sok apró idegsejt; térfogatához és tömegéhez képest sok sejtből áll. Az intelligensebb fajok (énekesmadarak, papagájok) agya tömegarányosan sokkal több sejtet tartalmaz, mint az emlősöké, afőemlősöketis beleértve. Testtömeghez képest az idegsejtek száma magasabb, mint a legtöbb emlősben, a főemlősöket kivéve. Például asárgafejű királykatesttömege kilencede egyegérének,mégis kétszer annyi idegsejtje van. Az idegsejtek a nagyagyban, különösen a nagyagy kérgében helyezkednek el sűrűn, ami énekesmadaraknál és papagájoknál három-négyszer annyi idegsejtet jelent, mint a főemlősökben. A madárfajok között óriási a különbség az agy viszonylagos méretét illetően. Abankivatyúktesttömege ötvenszerese aszéncinegének,mégis ugyanannyi neuronja van. De még a tyúkalakúak és a struccok esetén is akkora az idegsejtek sűrűsége, mint a főemlősöknél. A papagájok és az énekesmadarak nagy agya az utódgondozásnak köszönhető. A fejlettebb utódgondozás, mint feladat egy összetett viselkedésminta lehetővé teszi, hogy a fiókák agya is nagyra nőjön.[55]

Látás

[szerkesztés]

A madarak látásaáltalánosságban jól fejlett. A vízimadarak szemlencséje képes egyaránt alkalmazkodni a víz alatti és a víz feletti viszonyokhoz, és éles látást biztosítani.[53]Egyes fajoknak két sárgafoltja van. Négyféle csaptípusuk van, a vörös, zöld, kék mellett ultraibolya fényt észlelő csapjaik is vannak (tetrakromázia).[56]Az ultraibolya fény látása segíti őket a táplálékszerzésben és a párkeresésben is. A szem mellett agyukban is vannak fényérzékeny sejtek, amelyek észlelik a nappalok hosszának változását, és vezérlik az évszaknak megfelelő viselkedést.[57]

Egyes madárfajok, például akék cinketollazata ultraibolya mintákat is mutat. Ez segíti a nemek megkülönböztetését. A hím udvarlás közben ezeket mutatja különböző pózok felvételével és a tollak felborzolásával. Asólymoka rágcsálók által hagyott vizeletjelzések segítségével találják meg zsákmányukat. Agalambokés néhány más faj kivételével a madarak nem a szemhéjukkal, hanem pislogóhártyával pislognak, ami vízszintesen mozog. Vízimadarak ezt kontaktlencseként használják a vízben. A madarak szemében afésűszervgondoskodik a tápanyagellátásról és szabályozza az üvegtest kémhatását. A legtöbb madár nem tudja mozgatni a szemét; ha máshova akar nézni, akkor a fejét kell elmozdítania. Ez alól csak néhány kivétel van, például akormorán.Azok a madarak, amelyeknek oldalt van a szemük, fejük elfordítása nélkül is látnak hátrafelé; azok a madarak, amelyeknek elöl van a szemük, távolságot tudnak becsülni, mint például a baglyok.

Hallás

[szerkesztés]

A madaraknak nincs külső füle, csak néhány fajnál alkotnak fülszerű mintázatot a tollak, például egyes baglyoknál. A középfülben csak egy hallócsont van. A belső fülben csiga is van, viszonylag rövid és nincs feltekeredve. Abaglyokfüle aszimmetrikus, így pontosabban meg tudják határozni a leendő zsákmány helyét. A baglyok hallását arcuk alakja és tollazatának elrendeződése is segíti.[58]Ezzel szemben a legtöbb madárnak el kell mozdítania a fejét, hogy meghatározza a hangforrás irányát. Körülbelül ugyanazokat a hangokat hallják, mint az ember, a 100 Hz alatti hangok kivételével. A hallás időbeli felbontása kiváló, de érzékenyebb az erős zajokra. Egyes fajok akár négy hangot is képesek egyszerre kiénekelni.

Egyensúlyozás

[szerkesztés]

Nemcsak fülükben van egyensúlyozó szervük, hanem a medencében is, ami a testhelyzetet elemzi, és segíti az egyensúlyozást például ágon üléskor. Ha ez a szerv tönkremegy, akkor a madár nem képes reagálni az ág helyzetének megváltozására.

Szaglás és ízlelés

[szerkesztés]

A legtöbb madár szaglása kifejezetten gyenge, ami megközelítően azemberénekfelel meg. Ez alól kivételek akivifélék,[59]azújvilági keselyűk,[60]és aviharmadár-alakúak,akik szaglással keresik táplálékukat.[61]Orrlyukaik a csőr tövén nyílnak.

Az ízlelőbimbók nem a nyelven, hanem a nyelv tövénél és a garatban helyezkednek el. Számuk alacsony az emlősökéhez képest (kacsa 200, ember 9000). A táplálékszerzésben alárendelt szerep jut az ízlelésnek, szerepe mégsem elhanyagolható.

Tapintás

[szerkesztés]

A legtöbb madárnak a nyelve és a csőre a legérzékenyebb a tapintási ingerekre. Táplálékkereséskor a látást, táplálékfelvételben az ízlelést egészíti ki. Fára mászáskor a lábujjaik által észlelt ingerek alapján tájékozódnak. A lilealakúak és más madarak tapintással ismerik fel a táplálékukat, amikor az iszapban kotorásznak.

Mágneses érzék

[szerkesztés]

Egyes fajok, különösen a vándormadarak észlelik a Föld mágneses terét, az erővonalak irányát. Ennek érzékszerve a szemben[62](és/vagy) a csőrben helyezkedik el. Először Wolfgang Wiltschko mutatta kivörösbegyena Zoologischen Institut in Frankfurt am Mainben 1967-ben.

A szemben levő mágneses érzékszerv a gyökpárképződés elvén működik, ugyanis a szembe érkező fény hatására molekulák gyökökké bomlanak. Erre a folyamatra hathat a Föld mágneses tere. A csőrben mágneses részecskék alkotják az iránytűt; elmozdulásukat a környező idegszövet észleli. A technikai eszközökkel szemben ez az iránytű inkább azinklinációtméri.

Csontváz

[szerkesztés]
Egygalambcsontváza

A madaraknak kétkoponyatípusátkülönböztetjük meg: afutómadarakraéstinamukrajellemzőpaleognathés a repülő madarakra, valamint apingvinekrejellemző, fejlettebb felépítésűneognathkoponyát. Kifejlett madarakon a koponyacsontok összenőttek.[53]Emellett a madarakra általánosan jellemző a fogatlancsőrés anagy méretű szemüreg.A két szemüreget csontos sövény választja el.

A madarak csontjai, szemben azemlősöktömör csontjaival, üregesek, ezzel csökkentve az állat súlyát. A csontok nagyon könnyűek, üregeik a lélegzőrendszerhez kapcsolódnak.[63]

A madarak számos (11-24) nyakcsigolyája igen lazán,heterocoelikusmódon kapcsolódik egymáshoz, így a madárnyak rendkívül mozgékony. A hát mozgása már korlátozott, a többi szakasz pedig mozdíthatatlanul összenőtt, és az úgynevezettálkeresztcsontotvagy ágyékkeresztcsontot hozták létre.[53][64]

A bordák laposak, és a futómadarak kivételével az összes madárfaj szegycsontján jellegzetes tarajt (crista) találunk, amely tapadási felületet biztosít a repülőizmoknak.[65](A futómadarak közül egyedül a tinamualakúaknál található tarajos szegycsont, de ezek is röpképtelenek, vagy igen rosszul repülnek).

A mellső végtagban (szárny) elkülöníthető a felkarcsont, az orsócsont és a singcsont, valamint két kéztőcsont, de a többi kéztőcsont a kézközépcsontokkal összenőve hozza létre acarpometacarpust.

A hátsó végtagban a combcsontot, a tibiotarsust (a lábszárcsont és néhány lábtőcsont összenövéséből), a vékony szárkapocscsontot, a csüdcsontot és a lábujjperceket különíthetjük el. A legtöbb madárfajnak 4 lábujja van, de a futómadarak esetében ez redukálódhat 3 vagy 2 lábujjra.

Izomzat

[szerkesztés]
A repülőizmok

A madarak szárnyát hatalmas méretű mellizmok(musculus pectoralis,musculus supracoracoideus)mozgatják, amelyek a szegycsont taraján tapadnak meg. A tarajról indulva az egyik izom(a m. pectoralis)a felkarcsont alsó felületéhez, a másik(m. cupracoracoideus)a vállízületet megkerülve a felkarcsont felső felületéhez tapad. Vagyis a szárny lecsapását és felemelését végző izmok ugyanott erednek.

A madarak lábának különleges izma amusculus pectinus,amely a térdízülethez tapad, és inakkal az egyes lábujjakhoz csatlakozik. Ha a madár behajlítja a térdét, am. pectinusmegfeszül, és a madár lábujjai összezáródnak, ezzel biztosítva a kapaszkodást.

Kültakaró

[szerkesztés]
Csukott szemű bagoly egy hasonló színezetű fatörzsön. A levelek részben eltakarják.
AzOtus senegalensistollazata az álcázást segíti

A madarak testéttollakborítják, amelyeket evezőtollakra, fedőtollakra és pehelytollakra különítünk el. Ez ma már csak a madarakra jellemző; a földtörténeti múltban a nem a valódi madarakhoz tartozó dinoszauruszok között is voltak tollasak. Ez biztosítja a hőszigetelést, és segít a repülésben is. A tollak még fontos szerepet játszanak a párválasztás során, illetve az álcázásban.[53]Több különböző tolltípus létezik a különféle célokra. A legtöbb madáron pásztákban nőnek, csak apingvinek,a tüskésszárnyúmadár-félék és a ratites fajokon oszlanak el egyenletesen.[66]A pászták eloszlása jellemző a különféle rendszertani egységekre, így segíthetnek a meghatározásban. A tollazat egy fajon belül is különböző lehet, függ a nemtől,[67]a kortól és a társadalmi helyzettől.[68]

Sárga csőrű piros papagáj farktollait tisztogatja
Tollászkodóvörös lóri

Rendszeresen vedlenek. Az évente kétszer vedlő fajok költési időn kívül nyugalmi tollruhát, udvarlási és költési időben nászruhát viselnek. A legtöbb faj évente vedlik; a nagy ragadozók még ritkábban, több évente. A vedlési mintázat fajonként változó. Azénekesmadaraknála szárnytollak vedlése szimmetrikusan halad belülről kifelé. A következő toll akkor hullik ki, miután az előző már kinőtt. A fedőtollak az alattuk levő tollakkal együtt kerülnek sorra. A belső primary az első; miután az első öt primary lecserélődött, azután a terciary tollak következnek. Utánuk a secondary tollak jönnek.[69]Néhány faj, például akacsákegyszerre vesztik el szárnytollaikat, így egy időre röpképtelenekké válnak.[70]A faroktollak vedlési sorrendje a legtöbb fajon hasonló, belülről halad kifelé,[69]de például afácánoknálkívülről kezdődik.[71]Harkályokonnémileg módosult, a kifelé haladó fázis kihagyja a középső tollakat, azok a végén cserélődnek, így a harkály közben is támaszkodhat rá.[69][72]Énekesmadarakon a primary tollak kifelé, a secondary tollak kívülről befelé, és a farok belülről kifelé cserélődik.[73]Költés előtt a legtöbb faj nőstényei megkopaszodnak a hasukon. A bőr gazdagon erezett, ez segít a költésben.[74]

A madarak többnyire minden nap tollászkodnak, ébren töltött idejük 9%-át fordítják erre a tevékenységre.[75]Eltávolítják az idegen testeket. A madarak bőre mirigyekben szegény. Legfontosabb mirigyük a farcsíkmirigy(Glandula uropygii),amelynek zsírban gazdag viaszos váladéka vízhatlanná teszi a tollazatát, és akadályozza a baktériumok növekedését és szaporodását.[76]Egyes madaraknál különösen fejlett, más fajoknál hiányozhat. Tollászkodás végén ezzel a váladékkal keni be magát a madár. Ezt kiegészítheti hangyasavas kezeléssel, amit a hangyáktól szerezhet meg.[77]

A madarak lábán a pikkelyek ugyanúgy keratinból vannak, mint a csőr, a tollak és a karmok. Többnyire az ujjakon és a metatarsuson láthatók, de egyes madarakon (jégmadár,fakopáncsok) bokáig terjednek. Úgy gondolják, hogy homológok ahüllőkés az emlősök pikkelyeivel.[78]

Emésztőrendszer

[szerkesztés]

A madarak nyelőcsövének jellegzetes tágulata abegy,amelynek két típusa létezik: a két oldalra irányuló begyzsákokból állóvalódi begyés a nyelőcső egyszerű tágulata, azálbegy.Előbbi agalambokra,énekesmadarakraéstyúkfélékre,utóbbi aragadozó madarakraés arécefélékrejellemző. Több ragadozó madár köpetet képez a zsákmány maradékából.[79]

A madarakgyomrakét részre tagolódik, a mirigyes gyomorra és az izmoszúzógyomorravagy zúzára, amivel a táplálékot megőrlik, mivel nincsfoguk,mert az akadályozná őket arepülésben.A madaraknál ezért előfordul, hogyhomokotvagy apró kavicsokat nyelnek le, hogy azok segítsék őket a táplálék összezúzásában. A legtöbb faj a repülő életmódhoz való alkalmazkodás miatt gyorsan emészt.[80]Egyes vándormadarak fehérjében tárolnak tartalékokat a vándorlás idejére.[81]

Tápcsatornájuk rendre kloákában végződik, amely a tápcsatorna, az ivarszervek és a húgycső közös kivezetőnyílása.

Légzés

[szerkesztés]

A szárazföldi állatok közül a madaraknál alakult ki a legbonyolultabb és leghatékonyabblégzőszervrendszer.[53]Kettős légzéssel lélegeznek, melynek lényege, hogy a többi állattal ellentétben nemcsak be-, hanem kilégzéskor is történikgázcsere.[82]Ezt elsősorban atüdőspeciális felépítése teszi lehetővé. Belégzéskor a levegő 75%-a a tüdőbe, a maradék 25% a légzsákokba kerül.

További érdekesség, hogy a madarak hangképző szerve nem agégében,hanem afőhörgőkelágazásánál található, ezért két helyen is képződikhang.Az alsó gégefők izmos kamrák, amelyek többszörös membránt tartalmaznak.[83]Egyes fajokban a légcső a testhez képest lényegesen hosszabb, ami felerősíti a madár hangját.[84] A madár ily módon képes egyszerre énekelni és levegőt venni, illetve egyszerre több hang kiadására is képes lehet. (Afülemülékpéldául egyszerre négy különböző hang kiadására is képesek.)

A tüdő felépítése

[szerkesztés]
A madarak tüdeje és a kettős légzés (A: normál légzés, B: erőteljesebb légzés) 1. Trachea 2. Paleopulmó 3. Neopulmó 4. Hátulsó légzsák (csak a leghátsó pár) 5. Elülső légzsák

A madaraktüdővellélegeznek, melynek felépítése erősen eltér azemlősöktüdejétől. Míg az emlősök tüdejében a levegő vakon végződőléghólyagokba(alveolusokba) fut, addig a madarakéban úgynevezettléghajszálcsövektalálhatók, melyeken a levegő folyamatosan keresztüláramolhat.

Szerkezet alapján kétféle tüdőt különíthetünk el: a primitívebbpaleopulmót, és a fejlettebbneopulmót. A paleopulmóban a levegő kilégzéskor és belégzéskor is ugyanabba irányba áramlik, a neopulmóban ellentétesen.

A tüdőhöz 5 pár légzsák csatlakozik, amelyek hatékonyabbá teszik a ki- és belégzést, valamint könnyebbé teszik a madár testét. A madarak tüdejének térfogata állandó, alégcseréta légzsákok nyomásváltozása működteti.

A kettős légzés

[szerkesztés]

Alégcső(trachea)közvetlenül kapcsolódik a két hátulsó pár légzsákhoz valamint a paleo- és neopulmóhoz is. Belégzéskor a friss levegő közvetlenül átáramlik mind a paleo-, mind a neopulmón, így belégzéskor gázcsere történik. Ugyanekkor a hátulsó légzsákba is levegő kerül: egyrészt friss levegő közvetlenül a tracheából; másrészt a neopulmón átáramló, és már oxigénben szegényebb levegő is ide jut. Így a belégzés végére a légzsákban oxigénben viszonylag gazdag levegő lesz. Kilégzéskor a hátulsó légzsákokból a levegő egyrészt a légcsövön keresztül kiáramlik, másrészt ismét átáramlik a neopulmón így kilégzéskor is történik gázcsere. A légzsákból közvetlenül, és a neopulmón keresztül is kerül levegő a paleopulmóba, ezzel is növelve a gázcsere intenzitását.[82]

Keringés

[szerkesztés]

A madarak azemlősökhözhasonlóan állandó testhőmérsékletű, úgynevezett meleg vérű állatok.Szívükkét-két, szilárd válaszfal által elkülönített kamrából és pitvarból áll, és rostos zsák veszi körül. A rostos zsákban a szív folyadékban úszik. A vér visszaáramlását a szívben billentyűk gátolják. A szívverés ütemét a jobb pitvar falában található szinuszcsomó adja meg. A depolarizációs jelet kalciumionok okozzák. A szív izomzata ívekbe rendeződik, amelyek rétegeket alkotnak, a belső, a középső és a külső rétegeket.[85]A pitvarok fala vékonyabb, mint a kamráké, mert a kamráknak erőteljesen kell összehúzódniuk az oxigéndús vér pumpálásához. Az azonos testtömegű emlősökhöz képest a madarak szíve nagy; így több vért tud egy időegység alatt pumpálni, hogy fedezze a repülés miatt megnőtt oxigén- és energiaszükségletet.[86]

Két vérkörük van, a jobb szívfél a kisvérköri, a bal szívfél a nagyvérköri keringést tartja fenn. A kis vérkörben a jobb kamrából a szén-dioxidos vér a tüdőartérián keresztül a tüdőbe áramlik, majd onnan oxigéndús vér áramlik vissza a bal pitvarba. A bal kamrából oxigéndús vér áramlik a test szövetei felé, onnan szén-dioxidban dús vér a jobb pitvarba. A madarakban nagyon hatékony a gázcsere; a tüdőben tízszer akkora felület áll ehhez rendelkezésre, mint az azonos méretű emlősöknek, és a tüdőben több vér van a kapillárisokban hosszegységenként.[86]Az artériákat a szívből kiindulva vastag elasztikus izmok védik a szívverés okozta nyomáskülönbségtől. A szívtől távolodva ahogy vékonyodnak, egyre merevebbek lesznek, amelyek oxigént és tápanyagokat szállítanak az egész testnek.[87]Az egyre kisebb ágakra oszló artériák megnövelik a felszínt, és a vér folyása lelassul. A vér befolyik a legkisebb kapillárisokba, itt lezajlik a gázcsere. A vér annyira lelassul, hogy a gázcsere a lehető leghatékonyabb legyen. Az oxigéndús vér a bal pitvarba, majd a bal kamrába folyik. Az oxigénszegénnyé vált vér kis vénákba, majd vénákba gyűlik, és visszajut a szívbe, ahol is a jobb pitvarba, majd jobb kamrába ömlik.[87]

Kiválasztás

[szerkesztés]

A madarak kiválasztószervei a hüllőkhöz hasonlóan működnek. Veséjük a nitrogéntartalmú salakanyagot húgysavként választja ki.[88][89][90]Néhány madár, például a kolibrik képesek egy másik anyagcsereúton ammónia formájában is megszabadulni a fölös nitrogéntől.[91]Az emlősöktől eltérően kreatinin helyett kreatint választanak ki a kloákába, ami a végbél utolsó szakasza.[53]Nincs húgyhólyagjuk; a vizelet a végbélbe folyik (a strucc kivételével), majd onnan félig folyékony állapotban az ürülékkel távozik.[92][93]A végbélnek ez a szakasza a kloáka, nőstényekben a tojások is ezen haladnak át.

Szaporodó szervek

[szerkesztés]

A madarak két neműek, vannak hímek és nőstények. Nemüket a szexkromoszómák határozzák meg azivart meghatározó ZW rendszerszerint. Eszerint a nőstényeknek ZW, a hímeknek ZZ kromoszómáik vannak.[53]Tehát a nem megtermékenyüléskor eldől, a hőmérsékletnek erre nincs hatása. Azonban előfordulhat, hogy az egyik nem érzékenyebb a melegre, ami nemtől függő halandóságot okoz.[94]

A madarak belső megtermékenyítésűek. A legtöbb faj a kloákák összeérintésével párzik. Néhány fajnál a hímeknek van péniszük, ilyenek a lapos szegycsontúak a kivik kivételével, a lúdalakúak a tüskésszárnyúmadár-félék kivételével, és a tyúkalakúak. A Neoaves többi csoportjánál nincs pénisz.[95][96]A pénisz méretét a spermaverseny erősségével indokolják.[97]Párzáson kívül a pénisz a kloákában pihen.[98]

Ez az egyetlengerincescsoport, ahol az elevenszülés semmilyen formában nem jelent meg. Minden madárfaj meszes héjútojásokatrak.

Védekezés

[szerkesztés]

Aviharmadár-alakúaknéhány faja képes gyomrából olajat felöklendezni támadóira.[99]Új-Guineában apitohuisfajok közül egyesek tollai és bőre idegmérget tartalmaz.[100]

Néhány fajnak éles sarkantyúja van a szárnyán; ezek atüskésszárnyúmadár-félék,fácánfarkú levéljáró,tüskésszárnyú lúd,zuhatagi réceés kilencbíbicfaj.Néhány más faj csontos bütyköt visel vagy viselt a szárnyában, ezek: agőzhajórécék(Tachyeres),lúdformák,Rodriguez-szigeti galamb(kihalt),Chionis,CraxésBurhinusfajok. A kihaltjamaikai íbiszszárnya hosszú volt, és kézfej is volt rajta.[forrás?]Ezeket a fegyvereket használhatják a ragadozók vagy akár saját fajtársaik ellen is, amivel súlyos sérüléseket vagy akár halált is okozhatnak.[101]

Életmód

[szerkesztés]

A legtöbb faj nappal aktív, éjjel és szürkületkor csak a baglyok és alappantyúkaktívak. A tengerparti madarak nem az éjjel-nappali ciklushoz, hanem azárapályhozigazodnak, és éjjel és nappal is járnak táplálkozni, ha a vízállás megfelelő.[102]

Repülés

[szerkesztés]
Fehér mellű fekete madár repülés közben. Szárnyai lefelé csapnak, farka kiterítve lefelé néz.
Fehérállú császárlégykapórepülés közben

A madarak alkalmazkodtak a repüléshez. A legtöbb madár tud repülni, habár vannak röpképtelen fajok. A mellső végtag szárnnyá alakult.[53]A szárnyak alakja és mérete határozza meg, hogyan repül a madár. Általában erős szárnyverdeséses szakaszok váltakoznak siklórepüléssel. Az erős repülőizmok eredése a mellcsonton kiemelkedő tarajon található. A testtömeg 15%-át teszik ki.[53]Tollaik a bőr származékai, a szárny- és faroktollak a repülésre és a kormányzásra szolgálnak. Szivacsos szerkezetűek a csontjaik, ezért könnyebbek. A repülés nagy izommunkát igényel, ezért van szükségük fejlett légzésre és keringési rendszerre. Mindezek megkülönböztetik őket a többi gerincestől.

A repülést felhasználják táplálékszerzéshez, fészeképítő anyagok kereséséhez, ragadozók elkerülésére és a ragadozók elől való menekülésre. Voltak szigetek, ahová a madarak eljutottak, de az emlős ragadozók nem.[103]Ezeken a szigeteken a madarak az emlősök szerepét betöltve és a szűkös erőforrások miatt röpképteleneké váltak. Hatvan jelenleg is élő faj és több kihalt faj is röpképtelen (volt).[104]Egyes fajok ugyan nem repülnek, de repülő mozdulatkat végeznek úszás, búvárkodás közben: pingvinek, alkák. Ezeknek a repülő fajokhoz hasonló izomzatuk van. Puffin fajok és vízirigók úgy úsznak, ahogy repülnek.[105]Néhány faj az energiában szegény táplálék feldolgozásához alkalmazkodott. A futómadarak a gyors futásért váltak röpképtelenekké.

A repülés fizikai alapjai

[szerkesztés]
Akolibrirepülésének fázisai

A madarak repülését aszárnyfelépítése teszi lehetővé. A madarak szárnya repülés közben úgy tereli a levegőt, hogy a szárny felett gyorsabban áramoljon, mint alatta. Így a felül áramló levegőnyomásakisebb lesz. A madár az ebből adódóaerodinamikai felhajtóerőthasználja fel a repüléshez.

A madárszárny (és a legtöbb repülő állat szárnyának) különlegessége, hogy lecsapáskor aszárnyprofilaz állat sebességétől függően változtatható, így képes a rá ható felhajtóerőt változtatni. A madarak repülése rengeteg kutatót és mérnököt foglalkoztat. Ez a mechanizmus ugyanis sokkal hatékonyabb, mint arepülőgépekbenalkalmazott, mivel ezek szárnyprofilját csak nagyon kis mértékben lehet változtatni.

A madarak között egyedülálló akolibrifélékrepülési technikája. Szárnyaikkal előre-hátra csapkodva nyolcast írnak le a levegőben, így képesek egy helyben lebegni. (Erre egyetlen más madár sem képes.) Ehhez rendkívül gyorsan kell verdesniük: a legkisebb kolibrik másodpercenként akár hetven szárnycsapásra is képesek.

Intelligencia

[szerkesztés]

Egyes madarakat, mint a varjúféléket és a papagájokat a legértelmesebb állatok között tartják számon. Több faj is készít és használ eszközöket, továbbá tudást örökít át, amit kultúrának is lehet tekinteni. A vándormadarak minden évben nagy távolságokat tesznek meg. Társas állatok, hanggal és látható jelzésekkel kommunikálnak, és sok közös tevékenységben vesznek részt, mint telepeken költés, közös vadászat, tollászkodás és ragadozók elkergetése.

Táplálkozás

[szerkesztés]
16 különféle típust ábrázolása különböző méretű és alakú csőrrel
A csőr alakja alkalmazkodott a madárfajok táplálékához

A különböző madárfajok táplálkozása változatos. Fogyasztanak nektárt, gyümölcsöt, növényeket, magokat, de dögöt és más állatokat is, gerincteleneket és gerinceseket egyaránt, köztük más madárfajokat.[53]Mivel nincsenek fogaik, emésztőrendszerük alkalmazkodott a rágás nélkül megevett táplálék gyors emésztéséhez.[106]

Vannak generalisták, akik többféle módszerrel többféle táplálékot fogyasztanak, míg a specialisták csak egyféle módszert használnak, és erősen válogatósak.[53]Sok faj gerincteleneket, gyümölcsöket és magokat szedeget, de vannak fajok, amelyek lesből támadva kapják el apró zsákmányukat. A kártevőket elfogyasztó madarakat szívesen látják a gazdaságokban.[107]A nektárevők (kolibrifélék,nektármadárfélék,lórifélék) koevolválódtak táplálékadó növényeikkel, és ecsetszerű nyelvük van.[108]Kivifélékésgázlómadarakhosszú csőrükkel keresik gerinctelen zsákmányukat; a gázlómadarak fajonként változó hosszúságú csőre és módszerei különbözőökológiai fülkékreutalnak.[53][109]A búvármadarak, bukórécék, pingvinek és alkák víz alatt üldözik zsákmányukat, míg aszulafélék,jégmadárfélék,csérfélék légi vadászok, amelyek a levegőből csapnak bele a vízbe. Aflamingófélék,három prionfaj, és néhánykacsaa vizet szűri.[110][111]A libák és a réceformák főként legelnek.

Egyes madarak, mint afregattmadárfélék,asirályfélék[112]és ahalfarkasfélék[113]kleptoparaziták,azaz más madaraktól lopnak élelmet. Viszont nem ez a fő táplálékforrásuk; a halászattal, vadászattal szerzett élelmüket egészítik ki. Egy kutatás anagy fregattmadarakálarcos szuláktólvaló lopásait vizsgálta. A cikk szerint átlagban csak 5%-ot lopnak, és ebből táplálékuk legfeljebb 40%-a származik.[114]Egyes fajok dögöt esznek; vannak, amelyek emellett vadásznak is, mint a sirályok,varjúfélékés más ragadozók, és vannak, amelyek nem, ezek akeselyűk.[115]

A madarak vízigénye viszonylag kicsi, mivel nincsenek izzadtságmirigyeik és kiválasztásuk is hatékonyabb, mint az emlősöké.[116]Egyes sivatagi madarak képesek csak a táplálékból fedezni folyadékszükségletüket. Emellett másként is adaptálódtak ehhez a biotóphoz, például túlélik, ha testhőmérsékletük megemelkedik, és összegyűjtik a harmatot.[117]A tengeri madarak tengervizet isznak, a sót pedig a fejükön elhelyezkedő mirigyek választják ki.[118]

A legtöbb madár úgy iszik, hogy először a csőrébe veszi a vizet, majd felemeli a fejét, hogy a víz lefolyjon a nyelőcsövén. Agalambfélék,díszpintyfélék,egérmadárfélék,guvatfürjfélékéstúzokalakúaktudnak a fejük felemelése nélkül is inni.[119]Néhány sivatagi madár függ a vizesgödröktől, és a pusztaityúk-félék seregestül járnak vízért. A hímek hastollaikba itatva visznek vizet családjuknak.[120]Vannak fajok, amelyek begyükben szállítják a vizet, és a táplálékkal együtt öklendezik fel. A galambok, flamingók, pingvinek begytejet választanak ki a fiókák táplálására.[121]

Tollászkodás

[szerkesztés]

A tollászkodás fontos a madár egészsége szempontjából. Mivel a tollazat életfontosságú, rendben kell tartani. A tollakat gombák, tollatkák és madártetvek támadják.[122]A tollazat átkenése mellett a madarak szívesen fürödnek vízben vagy porban. Egyes fajok belemerülnek a vízbe, de vannak, amelyek inkább belerepülnek. Az erdei madarak gyakran a leveleken összegyűlt esővízben vagy harmatban mártóznak. Száraz területeken homokfürdőt vesznek. Ahangyafürdőzésazt jelenti, hogy a madár hagyja, hogy hangyák árasszák el tollruháját. A hangyasav tovább tisztítja a tollakat és a bőrt. Egyes fajok kitárt szárnyakkal napfürdőznek.[123][124]

Vándorlás

[szerkesztés]
V alakzatban repülőkanadai ludak

Sok faj kihasználja a különböző éghajlati öveket, és vándorol. A vándormadarak közé tartoznak szárazföldi, vízi és parti fajok, amelyek mérsékelt vagy hideg égövben szaporodnak, és költési időn kívül a trópusokra vagy a másik féltekére repülnek. Indulás előtt feltöltik raktáraikat, testzsírjuk megnövekszik, és egyes szerveik összemennek,[81][125]mivel a hosszú repülőutak nagyon energiaigényesek, különösen, ha tengereken vagy sivatagokon repülnek át, és nincs lehetőség táplálkozni. A szárazföldi vándormadarak többnyire körülbelül 2500, míg a parti madarak 4000 km-t tudnak megtenni.[126]A rekorder akis goda,ami éjjel-nappal repülve 10 200 km-re jut el.[127]Tengeri vándormadarak még hosszabb utakra indulnak, a leghosszabb utat a Chilében és Új-Zélandon költőszürke vészmadárteszi meg, és Japánban, Alaszkában és Kaliforniában tölti a nyarat. Évente összesen 64 ezer kilométert utazik.[128]Más tengeri madarak inkább rögzített útvonal nélkül nagy távolságokra kóborolnak. A Déli-óceánon fészkelő albatroszok gyakran egészen az északi sarkvidékig repülnek.[129]

A Csendes-óceán térképe, rajta útvonalakkal Új-Zélandtól Koreáig
Kis godák műholddal megfigyelt útja. Ezek a madarak éjjel-nappal repülve évente több mint 10 ezer kilométert képesek megtenni

A többi faj is kóborol, azaz rögzített útvonal nélkül rövidebb távolságokat tesz meg, hogy elkerülje a rossz időjárást és táplálékot szerezzen. Ilyenek a pintyek, amelyek költőhelyükhöz sem ragaszkodnak; évről évre új helyet keresnek maguknak, így ha az egyik évben sokan vannak egy helyen, akkor a következőben lehet, hogy eltűnnek onnan. Előfordul, hogy ugyanannak a fajnak az északibb területein költő példányai oda húzódnak, ahol fajtársaik egész évben tartózkodnak.[130]Mások csak részben vándorolnak, általában nőstények és alávetett hímek.[131]Egyes régiókban sok faj viselkedik így; Ausztráliában a nem énekesmadarak körében 44%, míg énekeseknél 32%. Magassági vándorlásra hegyekben költő fajok indulnak, a rossz idő közeledtével lejjebb vándorolnak. Ezt többnyire a lehűlés váltja ki, és a hegyek lakói jobb táplálékellátottságú helyeket keresnek maguknak.[132]Néhány faj nomád életmódú, nem tart territóriumot, hanem mindig oda vonul, ahol megfelelőek a körülmények. A papagájok rövidebb utakat tesznek meg.[133]

Már régóta ismert, hogy a madarak visszatalálnak fészkelőhelyükre. Az 1950-es években Bostonban útjára bocsátottak egy atlanti vészmadarat, ami 13 nap alatt 5150 km távolságról visszatért kolóniájába a walesi Skomernál.[134]Vándorlásuk alatt a madarak többféleképpen is tájékozódnak. Nappal a Napot, éjjel a Holdat és a csillagokat használják iránytűnek. A Nap helyzetének változását belső órájuk segítségével kompenzálják.[53]A csillagok közül a poláris csillagképek helyzetéhez igazodnak.[135]Emellett egyes fajok a Föld mágnesességét is kihasználják.[136]

Kommunikáció

[szerkesztés]
Nagy, barna mintás madár kitárt szárnyakkal. A szárnyak közepén egy-egy fehér pont látszik.
A guvatgém nagy ragadozót mímelve védi fiókáit

A madarak látható és hallható jelekkel kommunikálnak. A jelzések egy része a fajtársakhoz, másik része más fajok tagjaihoz szól.

Testtartásukkal és tollazatuk felmeresztésével kifejeznek dominanciaigényt,[137]vagy fenyegetőznek, eljátszva a nagy ragadozót, mint például aguvatgéma ragadozókkal szemben, hogy megvédje fiókáit.[138]A tollazat formája, színe és mintázata a faj, a nem vagy az egyed azonosítását is lehetővé teszi. A látható kommunikáció magában foglalja a rituálékat is, amelyeknek eredetileg nem jelzésértékük volt, hanem gyakorlati eredményük. A rituálék jelezhetnek agressziót, behódolást, vagy a másik párként való elfogadását.[53]A legbonyolultabb rituálék az udvarlást kísérik; a táncok gyakran sok különböző mozdulatból állnak.[139]A hímek szaporodási sikere ezektől a táncoktól függ.[140]

Madárének

Egy Észak-Amerikában gyakori énekesmadár, azindiánökörszeméneke

Probléma esetén lásd:Médiafájlok kezelése.

A madarak hangképző szerve az alsó gégefő, ami a hörgők kettéágazásánál található. A hangzó kommunikáció hívásokból és énekekből áll, amelyek nagyon összetettek lehetnek. A madarászoknak le kell lassítaniuk a felvételeket, hogy értelmezni tudják a hallottakat. Egyes fajok külön tudják mozgatni a két gégefőt, így duettet tudnak énekelni önmagukkal.[83]

A hívójelek sokfélék. Hívják társaikat,[53]felmérik a közelben tartózkodókat,[141]párzásra hívnak, védik területüket,[53]azonosítják egymást;[142]ragadozókra figyelmeztetnek, néha a veszély típusát is megjelölve.[143]Néhány madár a saját hangját mechanikai hangokkal egészíti ki. ACoenocoryphafajai levegőt vezetnek át tollaikon,[144]afakopáncsokfákon kopogtatva jelzik területüket,[80]és apálmakakadukeszközökkel dobolnak.[145]

Társas kapcsolatok

[szerkesztés]
Apró madarak nagy tömegben olyan távolságról, hogy az egyes madarak kis foltoknak látszódnak.
Piroscsőrű szövőmadarakraja. Ez a faj a legnagyobb egyedszámú a madarak között,[146]és akár tízezres létszámú rajai is lehetnek

Néhány faj területhez kötve, családban él, míg mások nagy rajokat alkotnak. A rajképzés előnye a nagy szám által adott védelem, és a hatékonyabb táplálékszerzés.[53]Az egy faj által alkotott nagy rajok biztonságot adnak, de növelik a versengést a táplálékért.[147]A ragadozók elleni védelem különösen fontos a zárt területeken, mint az erdők, ahol a lombok eltakarhatják a ragadozókat, de több szem többet lát, így hamarabb riadót fújhatnak. Ez nagy, sok fajt magukban foglaló csapatok kialakulásához vezetett, ahol a különböző fajok nem versengenek egymással a táplálékért, és az egyes fajok létszáma kicsi. Ugyanis, ha túl sokan lennének egy fajból, akkor az alacsony rangú tagok bántalmazása nagyban csökkentené a táplálékszerzés hatékonyságát.[148]

A madarak néha más, nem madár fajokkal is társulnak. A tengeri madarak gyakran vadásznak együtt delfinekkel és tonhalakkal, így a zsákmányhalaknak egyik irányból sincs menekvés.[149]Aszarvascsőrűmadár-félékaközönséges törpemongúzzaltársulnak, és együtt keresnek táplálékot, és kölcsönösen figyelmeztetik egymást a veszélyre.[150]

Pihenés

[szerkesztés]
Szürke lábú rózsaszín flamingó hosszú nyakát hátrafordítja, és fejét háttollai közé fúrja
Alvókaribi flamingó.Ez a póz gyakori az alvó madaraknál

Gyors anyagcseréjük miatt a madarak az aktív napszakukban is alszanak időnként. Alvás közben néha rövid időre kinyílik a szemük, hogy szemrevételezzék a környezetet, nincs-e veszély.[151]Úgy tudják, hogy asarlósfecskefélékrepülés közben is tudnak aludni, és radarmegfigyelések szerint a magasságcsökkenést a széllel szembe fordulva ellensúlyozzák.[152]Egyes alvástípusok alkalmasak lehetnek arra, hogy a madarak repülés közben is pihenhessenek.[153]Egyes fajoknál kimutatták, hogy agyféltekéik külön is tudnak aludni. Ezt a képességüket a rajban elfoglalt helyükhöz képest használhatják ki, mivel így az éber féltekéhez tartozó szem a kívülről érkező veszélyeket figyelheti.Tengeri emlősöknélis ismert hasonló adaptáció.[154]A madarak gyakran összegyűlnek éjszakára, aminek céljai a hatékony hőszabályozás és védekezés.[155]A gyülekezőhelyet is ennek megfelelően választják. Izzadságmirigyek híján különféleképpen hűtik magukat, például árnyékba húzódnak, vízbe állnak, kitárják szárnyukat, vagy levizelik magukat.[156]

Sok madár alvás közben nyakát a hátára hajtja, és csőrét a háttollak közé fúrja, míg más fajok a melltollaik közé dugják csőrüket. Sok madár fél lábon alszik, míg mások mindkét lábukat a tollaik közé rejtik, különösen hideg időben. ALoriculusnem papagájai fejjel lefelé lógnak.[157]Az énekesmadarak lába reflexesen zárul a gally körül alvás közben. Néhány nagyobb madárfaj, mint afürjés afácánéjszakára felgallyaz, vagyis fára települ alváshoz. Néhány kolibrifaj anyagcseréje jelentősen lelassul éjszakára.[158]Ez több száz faj esetén megtörténik, így akuvikfecskealakúak,azArtamusfajok és alappantyúfélékesetén is. Atéli estifecskehibernálódik.[159]

Szaporodás

[szerkesztés]
Egy zöld fejű és begyű, fekete mellű és rózsaszín alsótestű madár felfelé néz. Szárnyain és tollain hosszú tollakat visel.
Ahogy családjának többi tagja, a hímRaggi-paradicsommadárnászruhájával kelt benyomást a nőstényekre[160]

A fajok 95%-a szociálisan monogám. Ez azt jelenti, hogy egy hím és egy nőstény párba áll, a legtöbb fajnál egy tenyészszezonra, néhány fajnál évekre vagy egy egész életre.[161]Ez lehetővé teszi, hogy a szülők közösen neveljék fiókáikat, mivel egy szülő csak nagy nehezen, vagy egyáltalán nem járna sikerrel.[162]Azonban a legtöbb fajnál a félrelépés sem ritka.[163]Ez tipikus, ha a nőstény domináns hímmel lép félre, vagy aréceféléknéla hím erőszakot követ el a nősténnyel.[164]A nőstények tartalékolni tudják a spermát, egyes fajok akár 100 napig is,[165]így több hím spermáját is összegyűjtheti, így bebiztosíthatja magát arra az esetre, ha a párjának nem működne a spermája.[166]Ezeknél a fajoknál a párzási időszakban a hímek kísérgetik párjukat, hogy nehogy megcsalja őket, és hogy valóban a saját fiókáikat neveljék fel.[167]

Vannak más szaporodási rendszerek is, előfordul promiszkuitás és a poligámia több változata is (egy hím, több nőstény; több hím, egy nőstény; több hím, több nőstény). A poligám rendszerek akkor alakulnak ki, ha egy szülő, többnyire a nőstény egyedül fel tudja nevelni a fiókákat.[53]Néhány fajnál több rendszer is előfordul, a körülményektől függően. Homoszexuális párokat is megfigyeltek hímeknél és nőstényeknél is, udvarlással, párba állással, párzással, félrelépéssel és közös utódneveléssel.[168]

A párba állást általában udvarlás előzi meg. Tipikusan a hím udvarol a nősténynek.[169]A legtöbb egyszerű, az udvarló énekel; más rendszerekben kifinomult táncot ad elő, repül, fészket vagy lugast épít, néha testvéreivel közösen, lekben.[170]Általában a nőstény választ párt, de ez alól is van kivétel: avíztaposó,ahol a nemek szerepe fordított. A hímek választanak párt a színpompás nőstények közül,[171]és a hímek nevelik fel a fiókákat. Egymás etetése az udvarlás alatt nem jellemző, általában párzás után fordul elő.[80]

Fészekrakás és költés

[szerkesztés]

Sok faj területfoglalással védi a család táplálékbázisát. Amely fajok nem foglalnak területet, azok telepesen fészkelnek, és a sokaság nyújtotta védelmet élvezik. Ők a fészekhelyet védik, mivel a telep belseje védettebb, mint a külső része. Egyes telepeken több faj költ, itt a küzdelem független a fajtól.[172]

Fekete fejű sárga madár függ egy lefelé nyitott, fűből szőtt fészken.
A hímaranyhátú szövőmadárjól kidolgozott fészket épít fűszálakból

Többnyire az üregekben költő fajok fehér tojást, a szabadon álló fészekben költők terepszínű tojást raknak; ez alól azonban sok a kivétel. A lappantyúfélék halvány héjú tojásukat tollakkal álcázzák. Azok a fajok, amelyeknek költésparazitáik vannak, többféle színű tojást raknak, hogy észrevehessék aköltésparazitatojását. Minden új szín előnyben van. A költésparaziták azzal alkalmazkodnak, hogy olyan fészket keresnek, ahol a tojások az övéihez hasonlóak.[173]

Három gondoskodásra szoruló fészeklakó fióka egy elhalt fa törzsében épült fészekben.
Afehérhasú fecskeseregélyfészeklakó fiókái
Atőkés récefészekhagyó

A legtöbb madár fészekbe rakja tojásait. A fészek alakja sokféle lehet, lehet csésze, dóm, lapos, emeletes, üreg vagy halom.[174]Néhány fajnak nincs szüksége jól kiépített fészekre; az albatroszok csak kimélyítenek egy gödröt, az a fészek. A legtöbb madár elrejti, de a telepesen költők inkább nyitott fészket építenek, mivel védettebbek. Egyes fajok olyan növényeket válogatnak össze, amelyek védenek az élősködőktől, hogy a fiókák egészségesek legyenek,[175]és hőszigetelésként gyakran építenek be tollakat.[174]Néhány faj egyáltalán nem épít fészket; alummaa földre rakja a tojásait, acsászárpingvina lábai között tartja. A fészek hiánya gyakori azoknak a fajoknak a körében, amelyek talajra rakják tojásaikat, és fiókáik fészekhagyók.

Afészekhagyómadarak fiókái képesek követni anyjukat kikelésük után és önállóan táplálkoznak, de például repülni még nem tudnak. Általában talajszinten fészkelnek. A lúdalakúakra és a tyúkalakúakra jellemző.

Afészeklakómadarak általában csupaszon (csekély tollazattal), fejletlenül (csukott szemmel) kelnek ki, a szülők még sokáig gondozzák őket. Mivel a fiókák még nem önállóak és nem tudnak repülni, sőt, eleinte még járni sem, nagyrészt fákon fészkelnek, hogy az utódok védve legyenek a ragadozóktól. Kevés tojást raknak, mert a szülők nem tudnak sok fiókát gondozni.

Szénából épített fészek, benne öt fehér és egy fekete foltos szürke tojással
Szürke légykapótirannuszfészke, amibebarnafejű gulyajáróis tojt (fészekparazitizmus)

A legtöbb faj az utolsó tojás lerakása után kezd kotlani.[53] A költés optimalizálja a hőmérsékletet a fiókák fejlődése számára. Monogám fajok megosztják a költés idején a teendőket, habár vannak fajok, ahol csak az anya kotlik, és az apa hordja a táplálékot. Poligám fajok esetén mindent egy szülő intéz. A hőt a has vagy a mell csupasz bőre közli. A költés energiaigényes folyamat; az albatroszok akár napi 83 grammot is veszítenek súlyukból a költés alatt.[176]Azásótyúkféléknem maguk kotlanak, hanem a Nap, a vulkánok, vagy bomló növényzet hőjét használják fel.[177]A költési idő 10 naptól (apró fajok, énekesmadarak, harkályok, kakukk) 80 napig (nagy ragadozó madarak, albatroszok és kiwik) terjed.[53]

Nagyok a különbségek a különböző, akár közeli rokon fajok között. Néhány faj fő jellemzőit az alábbi, rendezhető táblázat foglalja össze:[178][179]

Utódnevelés

[szerkesztés]

Az utódnevelés hossza és természete erősen fajfüggő. Néhány faj, például az ásótyúkfélék már kikelésétől kezdve képes az önálló életre, és szülői segítség nélkül ássa ki magát a költődombból.[180]A másik szélsőséget a tengeri madarak képviselik, amelyeknél a szülői gondoskodás sokáig elhúzódik. A nagy fregattmadár fiókái hat hónap alatt tollasodnak ki, és hagyják el a fészket, de további tizennégy hónapig etetik őket.[181]A fiókákra vigyázó szülő segíti a hőgazdálkodást, és véd a ragadozókkal szemben.[182]

Egy kolibri kis fészkének szélén kapaszkodva eteti két fiókája közül az egyiket.
Nőstényrubinbegyű kolibrieteti kitollasodott fiókáit

A nevelést végezheti egy vagy mindkét szülő. Néhány fajnál a már felnőtt előző (vagy még idősebb) fészekalj is bekapcsolódik testvéreik nevelésébe.[183]Megfigyelhető a Corvida ág tagjainál,[184]de megfigyelhető azálcsuszkánálés avörös kányánális. A madaraknál gyakori az apai gondoskodás a fiókákról.[53]Az apa részt vesz a terület és a fészek védelmében, a költésben és a fiókák etetésében. Néha a különböző feladatok megoszlanak az apa és az anya között.[185]

A kitollasodás és a fészek elhagyásának ideje változó. A Synthliboramphus fajok fiókái a kikelésüket követő éjszaka elhagyják a fészket, és a tengeren nevelkednek, távol a szárazföldi ragadozóktól.[186]A fészekhagyó fajok fiókái szüleik vezetésével korán elhagyják a fészket. A legtöbb fajnál a fészek elhagyása és a repülés között nem telik el sok idő, de ez erősen változó. Miután az albatroszok fiókái elhagyták a fészket, nem kapnak további segítséget, de sok más fajé igen.[187]A fiatalok követik szüleiket első vándorútjukon.[188]

Költésparazitizmus

[szerkesztés]
Apró barna madár rovart tesz a fészekben ülő sokkal nagyobb szürke madár kitátott csőrébe
Cserregő nádiposzátakakukkfiókátetet

A költésparazitizmus azt jelenti, hogy a parazita az utódját becsempészi egy másik faj fészkébe, és azzal nevelteti fel. Ez a madarak körében a leggyakoribb.[189]A gazdafaj többnyire elfogadja sajátnak a parazita tojását, kikölti és felneveli a saját utódai kárára. Lehet feltételes vagy feltétlen. Ha feltétlen, akkor az anya az összes utódját más fajjal nevelteti fel, míg a másik esetben van saját fészke, de néhány tojást más fajokhoz csempész be, ha módja van rá.[190]Száznál több madárfajról tudják, hogy feltétlen költésparazita: az ismertkakukkokonkívülmézkalauzfélék,csirögefélék,récefélékközül akakukkrécetartoznak ide. Néhány faj korábban kel ki, mint a gazdamadár fiókái, és kidobálja a tojásokat és a fiókákat, ha mégis megelőzték a kikeléssel. Más fajok utódai vagy kiéheztetik a többi fiókát, vagy velük együtt nevelődnek fel.[191]

Szexuális szelekció

[szerkesztés]
Repülő pávakakas

A madarak körében többféle párválasztási módszer alakult ki. Apávaformákfarka aFisher-féle megszaladási jelenség legismertebb példája. Az általános nemi kétalakúság, mint a méret és a színezet különbsége az energiaszükséglet iránti igény különbségét is okozzák. A nagyobb mértékű különbség különösen költséges jellemzők kialakulását jelenti; ezek versenyhelyzetet jeleznek.[192][192]A madarak körében többféle szexuális szelekció ismert; az egyik rendszerben a nőstények választanak a hímek közül; a másikban az egyik nem tagjai megküzdenek egymással a párosodás jogáért. A megszaladási jelenségek eredményeként az óriási szárnyak és farkak könnyen észrevehetővé teszik a madarat, és akadályozzák is a mozgást. Ez a konfliktus biztosítja, hogy a jelek igaziak; ezekkel a díszekkel csak a jó életképességű hímek képesek életben maradni.[193]

Beltenyészet és elkerülése

[szerkesztés]

Abeltenyészetközeli rokonok utódnemzését jelenti. Többnyire előnytelen, mert a közeli rokonok sok génnek ugyanazt az allélját hordozzák, így a recesszív allélok gyakrabban találnak egymásra, ami rontja a túlélés esélyeit.[194]Ugyanis ezek gyakrabban okoznak betegséget, mint a domináns allélok. Mivel egy-egy faj minden tagja többé-kevésbé rokon, azért nem rokonnal nem állhatnak párba, de ha a faj nem veszélyeztetett, akkor lehet távoli rokont találni.[195][196]

A beltenyészet azebrapintynélkorai halált okozhat.[197]A távoli rokon párokhoz képest a testvér-testvér pároknál szignifikánsan rosszabb volt a kelési arány.

AGeospiza scandensföldi kaktuszpintyesetén a hatást környezeti tényezők is befolyásolják, például az elérhető táplálék mennyisége és minősége.[198]

Abíborsapkás tündérmadáresetén a közeli rokonok párzásából megtermékenyült tojások esetén több mint 30%-kal csökkent a kelési arány. Az ilyen kapcsolatokban a félrelépés is gyakoribb; az ilyen párok költéseinek 43%-ában találtak félrelépésből született fiókát. Ezzel csökkentik a beltenyészet káros hatásait.[199]

A széncinege esetén is rosszabbak a beltenyészetből származó utódok túlélési esélyei. A természetben a cinegék ezt azzal kerülik el, hogy születési helyüktől távol telepednek meg, így csökken annak az esélye, hogy közeli rokonukkal állnak párba.[200]

Atarka rigótimáliaképes felismerni közeli rokonait, és szintén eltávolodik attól a helytől, ahol nevelkedett. A csapatban csak olyan párt választanak, akit nem ismernek a régebbi helyükről.[201]

Vannak fajok, ahol az előző évi vagy még régebbi költésből származó fiatalok, tipikusan a hímek még a szüleikkel maradnak, és segítenek felnevelni testvéreiket.[202]A nőstények inkább elhagyják a környéket, és máshol alapítanak családot, vagy segítenek be még egy-két költésbe.

Ökológiai jelentőségük

[szerkesztés]
Egy kolibrifaj, azEutoxeres condamini

A madarakökológiaiszerepe igen sokféle.[146]Számosfajukgeneralista,és világszerte elterjedt, sokuk pedig szélsőségesen specializálódott azélőhelyéhezvagy a táplálékához. Még egy olyan „ egyszerű” élőhelyen is, mint azerdő,az egyesökológiai fülkékmadárvilága rendkívül eltérő, változatos lehet. Más fajok élnek például az erdő legfelső lombkoronaszintjén, a cserjeszinten, és az aljnövényzet szintjén.

A madarak között egyaránt találhatunknövényevőket,ragadozókat,ésdögevőket.A magevők fontos szerepet játszanak az egyes növények elterjesztésében, ugyanisürülékükkelnagyobb területre hordják szét amagokat.[203]Anektárraltáplálkozó madarak a táplálékul szolgáló növénymegporzásábanjátszanak nélkülözhetetlen szerepet (főleg atrópusokon). Ezek között gyakran nagyon szoroskoevolúcióskapcsolat figyelhető meg:[204]a növényt kizárólag egyetlen madárfaj képes megporozni, amely pedig csak a növény nektárjával táplálkozik.[205]Ilyen kapcsolat figyelhető meg például számoskolibrifajesetében.

A ragadozók főlegrovarokra,kisebbemlősökre,más madarakra vadásznak. A vízimadarak a prédaállatokpopulációinakszabályozásán kívül fontos szerepet játszanak a vízpartoktalajának,[206]és a tengervíz tápanyatartalmának[207]megújításában. Ez különösen a tengerpartok, tengeri szigetek tápanyagszegény talaján kolóniákban fészkelő fajoknál fontos.

A partvidéktől távol eső szigeteken gyakran madarak töltik be az egyébként emlősök által elfoglalt ökológiai fülkéket, mivel az emlősök oda nem voltak képesek eljutni. Tipikus példa erre azÚj-Zélandszigetén őshonoskereru,vagy a mára már kihaltmoák.[203]Új-Zélandon a növényeken olyan adaptációk láthatók, amelyek a moáktól védik őket.[208]

Kapcsolat az emberrel

[szerkesztés]
Egy szürke épületben két sornyi ketrec, mindegyikben sok fehér tyúkkal.
Ketreces tyúktartás

Mivel a madarak jól láthatók és gyakoriak, az ember már kialakulása idején kapcsolatba került velük.[209]Néha ez a kapcsolat mindkét fél számra előnyös volt, néha hátrány származott belőle valamelyik félnek. Amézkalauzféléksegítik az embereket, hogy a vadméhektől mézet és viaszt szerezzenek, amiért cserébe az emberek részt adnak a zsákmányból.[210]Vannak fajok, például aházi veréb,amelyek az ember szemetén élnek.[211]Néhány fajt elterjedt mezőgazdasági kártevőként tartanak számon.[212]Az ember ugyan a madarak nyomán emelkedett a levegőbe, de néha madarak repülnek a repülők hajtóműveibe, ami a madár halálát és a repülő lezuhanását okozza.[213]A közutak, a gyomirtók, és az ólommérgezés számottevő veszteséget jelentenek a madarak számára. Emellett az élőhelyek beszűkülése és a vadászat is hozzájárul egyes fajok kihalásához. A szélerőművek is pusztítják a madarakat,[214]akutyákés amacskákis vadásznak rájuk.

A madarak által terjesztett betegségek közé tartozik azinfluenza(madárinfluenza), anyugat-nílusi lázszúnyogcsípés révén, apapagájkór,aszalmonella,acampylobacteriosis,agiardiasisés acryptosporidiosis.Ezek egy részét az emberek is elkaphatják.[215]

Gazdasági jelentőség

[szerkesztés]

A gazdasági haszonállatként tartott baromfik húst, tojást és tollat adnak. Az ember belőlük viszi be a legtöbb állati eredetű fehérjét: 2003-ban 76 millió tonna húst és 61 millió tonna tojást.[216]A leggyakoribb faj aházi tyúk,de apulyka,házi kacsa,lúdis viszonylag gyakori. A vadászatot a kevéssé fejlett területek kivételével általában szórakozásból művelik; a hús melléktermék. Ígyfácán,fogoly,fajdformák,szalonka,vadpulyka,galambfélék,ésScolopaxfajok kerülnek tányérra. Észak- és Dél-Amerikában a vízi szárnyasok vadászata a legfontosabb.[217]Habár ma már a mezőgazdaság segít fenntarthatóvá tenni a vadászatot, régebben sok fajt az ember vadászattal irtott ki, vagy sodort a kihalás szélére.[218]

Egy halász tutajon evez bottal, körülötte fekete madarak a vízen
Ázsiában a hagyományos kormorános halászat visszaszorulóban van, de egyes területeken turistalátványosságként megmaradt

A tollat hőszigetelésre használják ágyneműkhöz és ruházathoz. A tengeri madarak ürüléke a guanó, amivel trágyáznak, mivel sok nitrogént és foszfort tartalmaz. Chile Bolíviával és Peruval háborúzott is 1879-től 1883-ig az értékes nyersanyagforrásért.[219]

Az ember díszállatként is tart madarakat. Régebben ez több fajt is veszélybe sodort; ma már a befogás illegális, de még mindig előfordul.[220]Sólymokkal és kormoránokkal vadásztak, halásztak. Időszámításunk kezdete körültől ismert, hogy galambokat használtak levelek kézbesítéséhez. A galambposta egészen a második világháború végéig fontos maradt. Ma már a galambászatot turizmus céljából vagy hobbiból űzik,[221]és versenyeken mérik össze galambjaik sebességét.

Az amatőr madármegfigyelők, fényképészek számát milliókban mérik.[222]Sokan télen etetik a környékükön élő madarakat, és az etetők különféle fajokat vonzanak. A madáretetést egy sok milliós üzletág támogatja. Nagy-Britanniában az otthonok 75%-a nyújtott ennivalót a madaraknak a tél egy szakaszában.[223]

Kultúra

[szerkesztés]

Vallás

[szerkesztés]

Egyes vallásokban a madarak az istenek hírnökei. Makemake a Húsvét-sziget főistene volt, akinek nevében a Tangata manu győztesei lettek a főnökök.[224]Két holló, Hugin és Munin Odin fülébe súgták a híreket.[225]Itália ókori civilizációiban, köztük az etruszk és a római vallásban a papok a madarak viselkedéséből, röptéből jósoltak.[226]Egyes kultúrákban istenítették vagy istenítik őket, mint a pávát Földanya megtestesítőjeként a dravidák.[227]Az inka és a tiwanaku kultúrában a madarak át tudták lépni a határt a földi világ és az alvilág között. A Közép-Andokban legendák szólnak a metafizikai világból jövő és oda távozó madarakról.[228]A Bibliában a galamb jelképként szerepel (héberיוֹנָה).[229]

Képzőművészetek

[szerkesztés]

Madárábrázolások már a történelem előtt feltűntek. Láthatók madarak a barlangrajzokon is.[230]Egyes madarak szörnyekként szerepelnek, így aruk madárvagy a maoriknál a legendásPouākai,egy nagy, emberevő madár.[231]A későbbi időkben a hatalom szimbólumaivá váltak, aperzsa uralkodóés amoguloktrónszéke pávát ábrázol.[232]A tudományos érdeklődés fellendülésével könyvekhez készültek festmények. Az egyik leghíresebb festőJohn James Audubonvolt, akinek Észak-Amerika madarairól készült képei népszerűvé váltak Európában. Róla nevezték ez a Nemzeti Audubon Társaságot.[233]

Költészet

[szerkesztés]

A költészetben is fontos figurák; például azOdüsszeiá-ban csalogányok szerepelnek,Catullusnálegy kismadár szerelmi szimbólummá vált.[234]Az albatrosz és a matróz közötti kapcsolat áll aSamuel Taylor Coleridge:The Rime of the Ancient Marinercímű költemény középpontjában. Ebből a versből vált az albatrosz a nehézségek jelképévé.[235]Az angol nyelvben a vulture (keselyű) szóval utalnak azokra az alapokra és befektetőkre, amelyek adósságot vásárolnak olcsón.[236]

A madarakhoz kapcsolódó képzettársítások kultúránként különböznek. Abaglyokbalszerencsét, boszorkányságot jelentenek, és Afrika és Európa egy részén a halál hírnökei,[237]de Európában bölcsnek tekintik.[238]Az ókori Egyiptomban abúbos bankaszent állat volt, és az erény szimbóluma Perzsiában, de Európában tolvajnak vélték, és Skandináviában a háború hírnökeként gondoltak rá.[239]

A zenében a madarak éneke insiprálta a szerzőket. Többen utánozták is, mint Vivaldi és Beethoven, és későbbi szerzők. Amikor a technológia lehetővé tette, akkor a madáréneket felvételről szerkesztették a zenébe. Elsőként Ottorino Respighi tett így. Beatrice Harrison és David Rothenberg duettet énekelnek a madarakkal.[240][241][242]

Rendszerezés

[szerkesztés]
Hóbagoly

A ma élő madarak két alosztályra tagozódnak, osztályozásuk azonban több helyen is vitatott. Sibley és AhlquistPhylogeny and Classification of Birds(1990) könyve alapmű,[243]de gyakran vitatják és módosítják. A legtöbb bizonyíték szerint a rendek pontosan megállapíthatók,[244]de a rendek közötti rokonságban nincs egyetértés. Az anatómia, a DNS és a fosszíliák vizsgálatával azonban egyre pontosabb képet kapnak erről is.[245][246]

Futómadár-szabásúak

[szerkesztés]

Afutómadár-szabásúak(Paleognathae)szájpadjának ősi jellegű, erős és nehéz csontozata van. Szegycsontjuk általában nem tarajos, röpképtelenek vagy csak ritkán repülnek. Két ismert rendjük:

Újmadárszabásúak

[szerkesztés]

Azújmadárszabásúak(Neognathae)csoportjában a szájpad nehéz, csontos váza visszafejlődött, szegycsontjukon nagy csonttaréj biztosítja a mellizmok tapadását. Többségük igen jól repül. Harmincegy rendjük ismert:

A már nem, vagy ritkán használt rendek

[szerkesztés]

Közismert madárnevek

[szerkesztés]

Az alábbiakban néhány közismert madártípus neve olvasható (egyszavas madárnevek). A madarak nemét ahímés atojóelnevezéssel különböztetjük meg. Néhány madártípus hímjének külön elnevezése van, amit zárójelben adunk meg.

Veszélyeztetettség

[szerkesztés]
Horgas csőrű, kopasz fejű nagy fekete madár.
A kaliforniai kondorból 1994-ben csak 22 maradt, de a fajmegőrző program 300-ra növelte a faj létszámát

Habár az ember tevékenysége elősegítette néhány faj terjedését, mint példáulfüsti fecskeésseregély, az IUCN Vörös Lista több mint 1200veszélyeztetettmadárfajt tartalmaz.[247][248]Sok faj fogyatkozik. A veszélyeztetettség legtöbbet idézett okai az élőhely elvesztése,[249]a behurcolt fajok ragadozó tevékenysége, balesetek (járművekkel, épületekkel, szélerőművekkel),[250]olajfoltok ésnövényvédő szerek,[251]behurcolt fajok,[252]vadászat és halászat, valamint aklímaváltozás.A történelmi időkben több mint száz madárfaj halt ki a gyarmatosítás előtt,[253]és a legnagyobb kihalástMelanézia,PolinéziaésMikronéziagyarmatosítása okozta, 750–1800 faj kipusztításával.[254]

Természetvédelmi és kormányzati szervek, csoportok működnek együtt a fajmegőrzésben. Ennek fő eszköze fajok védetté nyilvánítása, élőhelyek védelme, tenyésztés és visszatelepítés. Ezzel 1994 és 2004 között 16 madárfajt sikerült megmenteni a kihalástól, köztük akaliforniai kondortés anorfolki kecskepapagájt.[255]

Jegyzetek

[szerkesztés]
  1. http://www.ma.hu/tudomany/174896/Az_Archaeopteryx_madar_volt
  2. Brands, Sheila:Systema Naturae 2000 / Classification, Class Aves.Project: The Taxonomicon,2008. augusztus 14. (Hozzáférés: 2012. június 11.)
  3. del Hoyo, Josep.Handbook of Birds of the World,Volume 1: Ostrich to Ducks.Barcelona:Lynx Edicions(1992).ISBN 84-87334-10-5
  4. Linnaeus, Carolus.Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata.Holmiae. (Laurentii Salvii), 824. o. (1758)
  5. abcBradley C. Livezey, RL Zusi (2007. január 1.). „Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion”.Zoological Journal of the Linnean Society149(1), 1–95. o.DOI:10.1111/j.1096-3642.2006.00293.x.ISSN0024-4082.PMID18784798.PMC2517308.
  6. Padian, Kevin.szerk.:Philip J. Currieand Kevin Padian (eds.): Bird Origins,Encyclopedia of Dinosaurs.San Diego:Academic Press,41–96. o. (1997).ISBN 0-12-226810-5
  7. Gauthier, Jacques.szerk.: Kevin Padian: Saurischian Monophyly and the origin of birds,The Origin of Birds and the Evolution of Flight,Memoirs of the California Academy of Science8.San Francisco, CA: Published by California Academy of Sciences, 1–55. o. (1986).ISBN 0-940228-14-9
  8. abGauthier, J., and de Queiroz, K. (2001). "Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name Aves." Pp. 7–41 inNew perspectives on the origin and early evolution of birds: proceedings of the International Symposium in Honor of John H. Ostrom(J. A. Gauthier and L. F. Gall, eds.). Peabody Museum of Natural History, Yale University, New Haven, Connecticut, U.S.A.
  9. ab(2013) „A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds”.Nature498(7454), 359–62. o.DOI:10.1038/nature12168.PMID23719374.
  10. Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.) (2004).The Dinosauria,Second Edition. University of California Press., 861 pp.
  11. Senter, P (2007). „A new look at the phylogeny of Coelurosauria (Dinosauria: Theropoda)”.Journal of Systematic Palaeontology5,429–463. o.DOI:10.1017/S1477201907002143.
  12. Gauthier, J. (1986). "Saurischian monophyly and the origin of birds." In: K. Padian, ed.The origin of birds and the evolution of flight.San Francisco: California, Acad.Sci. pp.1–55. (Mem.Calif.Acad.Sci.8.)
  13. abAndrea Cau, Tom Brougham, Darren Naish (2015). „The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropodBalaurbondoc(Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?”.PeerJ3,e1032. o.DOI:10.7717/peerj.1032.PMID26157616.PMC4476167.
  14. (2011) „Evolving Perceptions on the Antiquity of the Modern Avian Tree, in Living Dinosaurs”.The Evolutionary History of Modern Birds,306–324. o, Kiadó: John Wiley & Sons LtD.DOI:10.1002/9781119990475.ch12.
  15. Influence of Earth's history on the dawn of modern birds.www.sciencedaily.com.American Museum of Natural History, 2015. december 11. (Hozzáférés: 2015. december 11.)
  16. abMichael SY Lee, Andrea Cau, Naish Darren, Dyke Gareth J. (May 2014). „Morphological Clocks in Paleontology, and a Mid-Cretaceous Origin of Crown Aves”.Systematic Biology63(1), 442–449. o, Kiadó: Oxford Journals.DOI:10.1093/sysbio/syt110.PMID24449041.
  17. P. D. Alonso, A. C. Milner, R. A. Ketcham, M. J. Cookson, T. B. Rowe (2004). „The avian nature of the brain and inner ear of Archaeopteryx”.Nature430(7000), 666–669. o.DOI:10.1038/nature02706.PMID15295597.PDF fulltextSupplementary info
  18. Prum, Richard O. Prum (2008. december 19.). „Who's Your Daddy?”.Science322(5909), 1799–1800. o.DOI:10.1126/science.1168808.PMID19095929.
  19. Paul, Gregory S..Looking for the True Bird Ancestor,Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds.Baltimore: Johns Hopkins University Press,171–224. o. (2002).ISBN 0-8018-6763-0
  20. Mark Norell, Ellison Mick.Unearthing the Dragon: The Great Feathered Dinosaur Discovery.New York: Pi Press (2005).ISBN 0-13-186266-9
  21. Borenstein, Seth. „Study traces dinosaur evolution into early birds”,2014. július 31.. [2014. augusztus 8-i dátummal azeredetibőlarchiválva] (Hozzáférés: 2017. február 27.)
  22. Michael S. Y. Lee, Andrea Cau, Darren Naish, Gareth J. Dyke (2014. augusztus 1.). „Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds”.Science345(6196), 562–566. o.DOI:10.1126/science.1252243.PMID25082702.
  23. (2011. július 28.) „AnArchaeopteryx-like theropod from China and the origin of Avialae”.Nature475(7357), 465–470. o.DOI:10.1038/nature10288.PMID21796204.
  24. Alan H. Turner, D. Pol, J.A. Clarke, G.M. Erickson, M.A. Norell (2007. szeptember 7.). „A basal dromaeosaurid and size evolution preceding avian flight”(PDF).Science317(5843), 1378–1381. o.DOI:10.1126/science.1144066.PMID17823350.
  25. X. Xu, Z. Zhou, X. Wang, X. Kuang, F. Zhang, X. Du (2003. január 23.). „Four-winged dinosaurs from China”.Nature421(6921), 335–340. o.DOI:10.1038/nature01342.PMID12540892.
  26. Luiggi, Christina:On the Origin of Birds.The Scientist, 2011. július 1. [2012. június 16-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2012. június 11.)
  27. G. Mayr, B. Pohl, S. Hartman, D.S. Peters (2007. január 1.). „The tenth skeletal specimen ofArchaeopteryx”.Zoological Journal of the Linnean Society149(1), 97–116. o.DOI:10.1111/j.1096-3642.2006.00245.x.
  28. abZheng, X., et al. (2013. március 15.). „Hind Wings in Basal Birds and the Evolution of Leg Feathers”.Science339(6125), 1309–1312. o.DOI:10.1126/science.1228753.PMID23493711.
  29. abcdChiappe, Luis M..Glorified Dinosaurs: The Origin and Early Evolution of Birds.Sydney: University of New South Wales Press (2007).ISBN 978-0-86840-413-4
  30. Agency France-Presse:Birds survived dino extinction with keen senses.Cosmos Magazine, 2011. április 1. [2015. április 2-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2012. június 11.)
  31. Wang, et al. (2015). „The oldest record of ornithuromorpha from the early cretaceous of China”.Nature Communications6.DOI:10.1038/ncomms7987.PMID25942493.
  32. Clarke, Julia A. (2004). „Morphology, Phylogenetic Taxonomy, and Systematics ofIchthyornisandApatornis(Avialae: Ornithurae)”(PDF).Bulletin of the American Museum of Natural History286,1–179. o.DOI:<0001:MPTASO>2.0.CO;2 10.1206/0003-0090(2004)286<0001:MPTASO>2.0.CO;2.(Hozzáférés: 2017. március 1.)
  33. Clarke, Julia A. (2004). „Morphology, Phylogenetic Taxonomy, and Systematics ofIchthyornisandApatornis(Avialae: Ornithurae)”(PDF).Bulletin of the American Museum of Natural History286,1–179. o.DOI:<0001:MPTASO>2.0.CO;2 10.1206/0003-0090(2004)286<0001:MPTASO>2.0.CO;2.(Hozzáférés: 2017. március 1.)
  34. A. Louchart, L. Viriot (2011). „From snout to beak: the loss of teeth in birds”.Trends In Ecology & Evolution26(12), 663–673. o. [2014. július 28-i dátummal azeredetibőlarchiválva].DOI:10.1016/j.tree.2011.09.004.(Hozzáférés: 2017. március 1.)
  35. J. A. Clarke, Z. Zhou, F. Zhang (2006. március 1.). „Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology ofYixianornis grabaui”.Journal of Anatomy208(3), 287–308. o.DOI:10.1111/j.1469-7580.2006.00534.x.PMID16533313.PMC2100246.
  36. Ritchison, Gary:Bird biogeography.Avian Biology.Eastern Kentucky University. (Hozzáférés: 2008. április 10.)
  37. Clements, James F..The Clements Checklist of Birds of the World,6th, Ithaca:Cornell University Press(2007).ISBN 978-0-8014-4501-9
  38. Gill, Frank.Birds of the World: Recommended English Names.Princeton:Princeton University Press(2006).ISBN 978-0-691-12827-6
  39. Clarke, Julia A. (2005). „Definitive fossil evidence for the extant avian radiation in the Cretaceous”(PDF).Nature433(7023), 305–308. o.DOI:10.1038/nature03150.PMID15662422.Nature.com,Supporting information
  40. Clarke, J.A. (2004). „Morphology, phylogenetic taxonomy, and systematics ofIchthyornisandApatornis(Avialae: Ornithurae)”.Bulletin of the American Museum of Natural History286,1–179. o. [2015. június 19-i dátummal azeredetibőlarchiválva].DOI:<0001:mptaso>2.0.co;2 10.1206/0003-0090(2004)286<0001:mptaso>2.0.co;2.(Hozzáférés: 2017. március 2.)
  41. abEricson, Per G.P., et al. (2006). „Diversification of Neoaves: integration of molecular sequence data and fossils”(PDF).Biology Letters2(4), 543–547. o. [2009. március 25-i dátummal azeredetibőlarchiválva].DOI:10.1098/rsbl.2006.0523.PMID17148284.(Hozzáférés: 2017. március 2.)
  42. Joseph W. Brown, R.B. Payne, D.P. Mindell (2007. június 1.). „Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al.”.Biology Letters3(3), 257–259. o.DOI:10.1098/rsbl.2006.0611.PMID17389215.PMC2464679.
  43. Ornithologists Publish Most Comprehensive Avian Tree of Life
  44. Newton, Ian.The Speciation and Biogeography of Birds.Amsterdam: Academic Press,463.o. (2003).ISBN 0-12-517375-X
  45. abBrooke, Michael.Albatrosses And Petrels Across The World.Oxford: Oxford University Press (2004).ISBN 0-19-850125-0
  46. Schreiber, Elizabeth Anne.Biology of Marine Birds.Boca Raton: CRC Press (2001).ISBN 0-8493-9882-7
  47. Sato, Katsufumi, et al. (2002. május 1.). „Buoyancy and maximal diving depth in penguins: do they control inhaling air volume?”.Journal of Experimental Biology205(9), 1189–1197. o.PMID11948196.
  48. Hill, David.The Pheasant: Ecology, Management, and Conservation.Oxford: BSP Professional (1988).ISBN 0-632-02011-3
  49. Spreyer, Mark F.:Monk Parakeet (Myiopsitta monachus).The Birds of North America.Cornell Lab of Ornithology, 1998.DOI:10.2173/bna.322.(Hozzáférés: 2015. december 13.)
  50. Arendt, Wayne J. (1988. január 1.). „Range Expansion of the Cattle Egret,(Bubulcus ibis)in the Greater Caribbean Basin”.Colonial Waterbirds11(2), 252–62. o.DOI:10.2307/1521007.JSTOR1521007.
  51. Bierregaard, R.O..szerk.: Josep del Hoyo, Andrew Elliott and Jordi Sargatal (eds.): Yellow-headed Caracara,Handbook of the Birds of the World.Volume 2; New World Vultures to Guineafowl.Barcelona: Lynx Edicions (1994).ISBN 84-87334-15-6
  52. Juniper, Tony.Parrots: A Guide to the Parrots of the World.London:Christopher Helm(1998).ISBN 0-7136-6933-0
  53. abcdefghijklmnopqrstuvGill, Frank.Ornithology.New York: WH Freeman and Co (1995).ISBN 0-7167-2415-4
  54. Anton Reiner, David J. Perkel, Claudio V. Mello, Erich D. Jarvis:Songbirds and the Revised Avian Brain Nomenclature.In: H. Philip Zeigler, Peter Marler (Hrsg):Behavioral Neurobiology of Birdsong.Annals of the New York Academy of Sciences.Bd. 1016, 2004, S. 77–108,doi:10.1196/annals.1298.013,PMC2481519
  55. Gesamter Absatz nach: Seweryn Olkowicz, Martin Kocourek, Radek K. Lučan, Michal Porteš, W. Tecumseh Fitch, Suzana Herculano-Houzel, Pavel Němec:Birds have primate-like numbers of neurons in the forebrain.Proceedings of the National Academy of Sciences of the United States of America. Bd. 113, Nr. 26, 2016, S. 7255–7260,doi:10.1073/pnas.1517131113
  56. Wilkie, Susan E., et al. (1998. február 1.). „The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus)”.Biochemical Journal330(Pt 1), 541–47. o.PMID9461554.PMC1219171.
  57. Féányérzékeny sejtek az agyban[halott link]
  58. Háziállat.hu a baglyokról
  59. Sales, James (2005). „The endangered kiwi: a review”(PDF).Folia Zoologica54(1–2), 1–20. o. [2007. szeptember 26-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2017. március 6.)
  60. Ehrlich, Paul R.:The Avian Sense of Smell.Birds of Stanford.Stanford University, 1988. (Hozzáférés: 2007. december 13.)
  61. Lequette, Benoit (1989. augusztus 1.). „Olfaction in Subantarctic seabirds: Its phylogenetic and ecological significance”(PDF).The Condor91(3), 732–35. o. [2013. február 23-i dátummal azeredetibőlarchiválva].DOI:10.2307/1368131.
  62. Christine Maira Hein, Svenja Engels, Dmitry Kishkinev, Henrik Mouritsen:Robins have a magnetic compass in both eyes.In:Nature.Bd. 471, E1, 2011,doi:10.1038/nature09875.
  63. Ehrlich, Paul R.:Adaptations for Flight.Birds of Stanford.Stanford University,1988. (Hozzáférés: 2007. december 13.)Based on The Birder's Handbook (Paul Ehrlich,David Dobkin, and Darryl Wheye. 1988. Simon and Schuster, New York.)
  64. Noll, Paul. „The Avian Skeleton”,paulnoll.com(Hozzáférés: 2007. december 13.)
  65. Skeleton of a typical bird”,Fernbank Science Center's Ornithology Web(Hozzáférés: 2007. december 13.)
  66. Demay, Ida S. (1940). „A Study of the Pterylosis and Pneumaticity of the Screamer”.The Condor42(2), 112–118. o.DOI:10.2307/1364475.JSTOR1364475.
  67. Guthrie, R. Dale:How We Use and Show Our Social Organs.Body Hot Spots: The Anatomy of Human Social Organs and Behavior.[2007. június 21-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2007. október 19.)
  68. Belthoff, James R. (1994. augusztus 1.). „Plumage Variation, Plasma Steroids and Social Dominance in Male House Finches”.The Condor96(3), 614–25. o.DOI:10.2307/1369464.
  69. abcPettingill Jr. OS.Ornithology in Laboratory and Field.Burgess Publishing Co (1970).ISBN 0-12-552455-2
  70. de Beer SJ, Lockwood GM, Raijmakers JHFS, Raijmakers JMH, Scott WA, Oschadleus HD, Underhill LG (2001). "SAFRING Bird Ringing ManualArchiválva2017. október 19-idátummal aWayback Machine-ben ".
  71. Gargallo, Gabriel (1994. június 1.). „Flight Feather Moult in the Red-Necked NightjarCaprimulgus ruficollis”.Journal of Avian Biology25(2), 119–24. o.DOI:10.2307/3677029.JSTOR3677029.
  72. Mayr, Ernst (1954). „The tail molt of small owls”(PDF).The Auk71(2), 172–78. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:10.2307/4081571.
  73. Payne, Robert B:Birds of the World, Biology 532.Bird Division, University of Michigan Museum of Zoology. [2012. február 26-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2007. október 20.)
  74. Turner, J. Scott (1997). „On the thermal capacity of a bird's egg warmed by a brood patch”.Physiological Zoology70(4), 470–80. o.DOI:10.1086/515854.PMID9237308.
  75. Walther, Bruno A. (2005). „Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps”.Behavioural Ecology16(1), 89–95. o.DOI:10.1093/beheco/arh135.
  76. Matthew D. Shawkey, R. Pillai, Geoffrey E. Hill (2003). „Chemical warfare? Effects of uropygial oil on feather-degrading bacteria”.Journal of Avian Biology34(4), 345–49. o.DOI:10.1111/j.0908-8857.2003.03193.x.
  77. Ehrlich, Paul R. (1986). „The Adaptive Significance of Anting”(PDF).The Auk103(4), 835. o. [2013. május 24-i dátummal azeredetibőlarchiválva].
  78. Lucas, Alfred M..Avian Anatomy—integument.East Lansing, Michigan, US: USDA Avian Anatomy Project, Michigan State University, 67, 344, 394–601. o. (1972)
  79. Balgooyen, Thomas G. (1971. október 1.). „Pellet Regurgitation by Captive Sparrow Hawks(Falco sparverius)”(PDF).Condor73(3), 382–85. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:10.2307/1365774.JSTOR1365774.
  80. abcAttenborough, David.The Life of Birds.Princeton: Princeton University Press (1998).ISBN 0-691-01633-X
  81. abBattley, Phil F., et al. (2000. január 1.). „Empirical evidence for differential organ reductions during trans-oceanic bird flight”.Proceedings of the Royal Society B267(1439), 191–5. o.DOI:10.1098/rspb.2000.0986.PMID10687826.PMC1690512.(Erratum inProceedings of the Royal Society B267(1461):2567.)
  82. abMaina, John N. (2006. november 1.). „Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone”.Biological Reviews81(4), 545–79. o.DOI:10.1017/S1464793106007111.PMID17038201.
  83. abSuthers, Roderick A. (2004. június 1.). „Producing song: the vocal apparatus”.Ann. N. Y. Acad. Sci.1016,109–29. o.DOI:10.1196/annals.1298.041.PMID15313772.
  84. Fitch, W. T. (1999). „Acoustic exaggeration of size in birds via tracheal elongation: comparative and theoretical analyses”.Journal of Zoology248,31–48. o.DOI:10.1017/S095283699900504X.
  85. Whittow, G. (2000). Sturkie's Avian Physiology/ edited by G. Causey Whittow. San Diego: Academic Press, 2000.
  86. abHoagstrom, C.W. (2002). Vertebrate Circulation. Magill's Encyclopedia of Science: Animal Life. Vol 1, pp 217-219. Pasadena, California, Salem Press.
  87. abHill, Richard W. (2012) Animal Physiology/ Richard W. Hill, Gordon A. Wyse, Margaret Anderson. Third Edition pp 647-678. Sinauer Associates, 23 Plumtree Road, Sunderland, MA 01375 USA
  88. Ehrlich, Paul R.:Drinking.Birds of Stanford.Stanford University, 1988. (Hozzáférés: 2007. december 13.)
  89. Tsahar, Ella, et al. (2005). „Can birds be ammonotelic? Nitrogen balance and excretion in two frugivores”.Journal of Experimental Biology208(6), 1025–34. o.DOI:10.1242/jeb.01495.PMID15767304.
  90. Skadhauge, E, et al. (2003). „Does the ostrich(Struthio camelus)coprodeum have the electrophysiological properties and microstructure of other birds?”.Comparative Biochemistry and Physiology A134(4), 749–755. o.DOI:10.1016/S1095-6433(03)00006-0.PMID12814783.
  91. Marion R., Carol A. Beuchat (1997. április 1.). „Ammonia excretion by hummingbirds”.Nature386(6625), 561–62. o.DOI:10.1038/386561a0.
  92. Mora, J., et al. (1965). „The regulation of urea-biosynthesis enzymes in vertebrates”.Biochemical Journal96(1), 28–35. o.PMID14343146.PMC1206904.
  93. Packard, Gary C. (1966). „The Influence of Ambient Temperature and Aridity on Modes of Reproduction and Excretion of Amniote Vertebrates”.The American Naturalist100(916), 667–82. o.DOI:10.1086/282459.JSTOR2459303.
  94. A. Göth, D.T. Booth (2005. március 1.). „Temperature-dependent sex ratio in a bird”.Biology Letters1,31–3. o.DOI:10.1098/rsbl.2004.0247.PMID17148121.PMC1629050.
  95. Yong, Ed:Phenomena: Not Exactly Rocket Science How Chickens Lost Their Penises (And Ducks Kept Theirs).Phenomena.nationalgeographic.com. (Hozzáférés: 2013. október 3.)
  96. Ornithology, 3rd Edition - Waterfowl: Order Anseriformes.[2015. június 22-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2013. október 3.)
  97. McCracken, KG (2000). „The 20-cm Spiny Penis of the Argentine Lake Duck (Oxyura vittata)”.The Auk117(3), 820–825. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:[0820:TCSPOT2.0.CO;2 10.1642/0004-8038(2000)117[0820:TCSPOT]2.0.CO;2].
  98. Gionfriddo, James P. (1995. február 1.). „Grit Use by House Sparrows: Effects of Diet and Grit Size”(PDF).Condor97(1), 57–67. o.DOI:10.2307/1368983.
  99. Warham, John (1977. május 1.). „The incidence, function and ecological significance of petrel stomach oils”(PDF).Proceedings of the New Zealand Ecological Society24(3), 84–93. o.
  100. Dumbacher, J.P., et al. (1992. október 1.). „Homobatrachotoxin in the genusPitohui:chemical defense in birds?”.Science258(5083), 799–801. o.DOI:10.1126/science.1439786.PMID1439786.
  101. N. R. Longrich, S. L. Olson (2011. január 5.). „The bizarre wing of the Jamaican flightless ibis Xenicibis xympithecus: a unique vertebrate adaptation”.Proceedings of the Royal Society B: Biological Sciences278(1716), 2333–2337. o.DOI:10.1098/rspb.2010.2117.(Hozzáférés: 2015. november 12.)
  102. Michel Robert, Raymond McNeil, Alain Leduc (1989. január 1.). „Conditions and significance of night feeding in shorebirds and other water birds in a tropical lagoon”(PDF).The Auk106(1), 94–101. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:10.2307/4087761.
  103. McNab, Brian K. (1994. október 1.). „Energy Conservation and the Evolution of Flightlessness in Birds”.The American Naturalist144(4), 628–42. o.DOI:10.1086/285697.JSTOR2462941.
  104. Roots, Clive.Flightless Birds.Westport: Greenwood Press (2006).ISBN 978-0-313-33545-7
  105. Christopher E. Kovacs, R. A. Meyers (2000). „Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic Puffin,Fratercula arctica”.Journal of Morphology244(2), 109–25. o.DOI:<109::AID-JMOR2>3.0.CO;2-0 10.1002/(SICI)1097-4687(200005)244:2<109::AID-JMOR2>3.0.CO;2-0.PMID10761049.
  106. How Do Birds Eat If They Have No Teeth? | Blog | eNature.wild.enature.com.[2016. április 14-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2017. március 13.)
  107. N Reid:Birds on New England wool properties – A woolgrower guide(PDF).Land, Water & Wool Northern Tablelands Property Fact Sheet.Australian Government – Land and Water Australia, 2006. [2011. március 15-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2010. július 17.)
  108. D. Paton, C. B. G. Collins (1989. április 1.). „Bills and tongues of nectar-feeding birds: A review of morphology, function, and performance, with intercontinental comparisons”.Australian Journal of Ecology14(4), 473–506. o.DOI:10.1111/j.1442-9993.1989.tb01457.x.
  109. Baker, Myron Charles (1973. április 1.). „Niche Relationships Among Six Species of Shorebirds on Their Wintering and Breeding Ranges”.Ecological Monographs43(2), 193–212. o.DOI:10.2307/1942194.JSTOR1942194.
  110. Cherel, Yves (2002). „Food and feeding ecology of the sympatric thin-billedPachyptila belcheriand AntarcticP. desolataprions at Iles Kerguelen, Southern Indian Ocean”.Marine Ecology Progress Series228,263–81. o.DOI:10.3354/meps228263.
  111. Jenkin, Penelope M. (1957). „The Filter-Feeding and Food of Flamingoes (Phoenicopteri)”.Philosophical Transactions of the Royal Society B240(674), 401–93. o.DOI:10.1098/rstb.1957.0004.JSTOR92549.
  112. Miyazaki, Masamine (1996. július 1.). „Vegetation cover, kleptoparasitism by diurnal gulls and timing of arrival of nocturnal Rhinoceros Auklets”(PDF).The Auk113(3), 698–702. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:10.2307/3677021.JSTOR3677021.
  113. Bélisle, Marc (1995. augusztus 1.). „Predation and kleptoparasitism by migrating Parasitic Jaegers”(PDF).The Condor97(3), 771–781. o.DOI:10.2307/1369185.
  114. Vickery, J. A. (1994. május 1.). „The Kleptoparasitic Interactions between Great Frigatebirds and Masked Boobies on Henderson Island, South Pacific”(PDF).The Condor96(2), 331–40. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:10.2307/1369318.JSTOR1369318.
  115. Hiraldo, F.C. (1991). „Unspecialized exploitation of small carcasses by birds”.Bird Studies38(3), 200–07. o.DOI:10.1080/00063659109477089.
  116. Engel, Sophia Barbara.Racing the wind: Water economy and energy expenditure in avian endurance flight[archivált változat].University of Groningen (2005).ISBN 90-367-2378-7.Hozzáférés ideje: 2017. március 15. [archiválás ideje: 2020. április 5.]
  117. B.I. Tieleman, J.B. Williams (1999). „The role of hyperthermia in the water economy of desert birds”.Physiol. Biochem. Zool.72(1), 87–100. o.DOI:10.1086/316640.PMID9882607.
  118. Schmidt-Nielsen, Knut (1960. május 1.). „The Salt-Secreting Gland of Marine Birds”.Circulation21(5), 955–967. o.DOI:10.1161/01.CIR.21.5.955.
  119. Hallager, Sara L. (1994). „Drinking methods in two species of bustards”.Wilson Bull.106(4), 763–764. o.
  120. MacLean, Gordon L. (1983. június 1.). „Water Transport by Sandgrouse”.BioScience33(6), 365–369. o.DOI:10.2307/1309104.JSTOR1309104.
  121. Eraud C (2008). „The crop milk: a potential new route for carotenoid-mediated parental effects”.Journal of Avian Biology39(2), 247–251. o.DOI:10.1111/j.0908-8857.2008.04053.x.
  122. Mario, Principato, et al. (2005). „The alterations of plumage of parasitic origin”.Italian Journal of Animal Science4,296–299. o. [2013. június 17-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2017. március 16.)
  123. Hannah C. Revis, Deborah A. Waller (2004). „Bactericidal and fungicidal activity of ant chemicals on feather parasites: an evaluation of anting behavior as a method of self-medication in songbirds”.The Auk121(4), 1262–1268. o.DOI:[1262:BAFAOA2.0.CO;2 10.1642/0004-8038(2004)121[1262:BAFAOA]2.0.CO;2].
  124. Clayton, Dale H., et al. (2010). „How Birds Combat Ectoparasites”.The Open Ornithology Journal3,41–71. o. [2017. augusztus 11-i dátummal azeredetibőlarchiválva].DOI:10.2174/1874453201003010041.(Hozzáférés: 2017. március 16.)
  125. Klaassen, Marc (1996. január 1.). „Metabolic constraints on long-distance migration in birds”.Journal of Experimental Biology199(1), 57–64. o.PMID9317335.
  126. Gill, Frank.Ornithology,2nd, New York: W.H. Freeman (1995).ISBN 0-7167-2415-4
  127. Long-distance Godwit sets new record”,BirdLife International,2007. május 4.. [2013. október 2-i dátummal azeredetibőlarchiválva] (Hozzáférés: 2007. december 13.)
  128. Shaffer, Scott A., et al. (2006). „Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer”.Proceedings of the National Academy of Sciences of the United States of America103(34), 12799–802. o.DOI:10.1073/pnas.0603715103.PMID16908846.
  129. Croxall, John P., et al. (2005). „Global Circumnavigations: Tracking year-round ranges of nonbreeding Albatrosses”.Science307(5707), 249–50. o.DOI:10.1126/science.1106042.PMID15653503.
  130. Wilson, W. Herbert, Jr. (1999). „Bird feeding and irruptions of northern finches:are migrations short stopped?”(PDF).North America Bird Bander24(4), 113–21. o. [2013. május 24-i dátummal azeredetibőlarchiválva].
  131. Nilsson, Anna L. K. (2006). „Do partial and regular migrants differ in their responses to weather?”.The Auk123(2), 537–47. o.DOI:[537:DPARMD2.0.CO;2 10.1642/0004-8038(2006)123[537:DPARMD]2.0.CO;2].
  132. Rabenold, Kerry N. (1985). „Variation in Altitudinal Migration, Winter Segregation, and Site Tenacity in two subspecies of Dark-eyed Juncos in the southern Appalachians”(PDF).The Auk102(4), 805–19. o.
  133. Collar, Nigel J..szerk.: Josep del Hoyo, Andrew Elliott and Jordi Sargatal (eds.): Family Psittacidae (Parrots),Handbook of the Birds of the World,Volume 4: Sandgrouse to Cuckoos.Barcelona: Lynx Edicions (1997).ISBN 84-87334-22-9
  134. Matthews, G. V. T. (1953. szeptember 1.). „Navigation in the Manx Shearwater”.Journal of Experimental Biology30(2), 370–96. o.
  135. Mouritsen, Henrik (2001. november 15.). „Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass”.Journal of Experimental Biology204(8), 3855–65. o.PMID11807103.
  136. Deutschlander, Mark E. (1999. április 15.). „The case for light-dependent magnetic orientation in animals”.Journal of Experimental Biology202(8), 891–908. o.PMID10085262.
  137. Möller, Anders Pape (1988). „Badge size in the house sparrowPasser domesticus”.Behavioral Ecology and Sociobiology22(5), 373–78. o.DOI:10.1007/BF00295107.
  138. Thomas, Betsy Trent (1990. augusztus 1.). „Nesting Behavior of Sunbitterns(Eurypyga helias)in Venezuela”(PDF).The Condor92(3), 576–81. o. [2013. május 24-i dátummal azeredetibőlarchiválva].DOI:10.2307/1368675.
  139. Pickering, S. P. C. (2001). „Courtship behaviour of the Wandering AlbatrossDiomedea exulansat Bird Island, South Georgia”(PDF).Marine Ornithology29(1), 29–37. o.
  140. Pruett-Jones, S. G. (1990. május 1.). „Sexual Selection Through Female Choice in Lawes' Parotia, A Lek-Mating Bird of Paradise”.Evolution44(3), 486–501. o.DOI:10.2307/2409431.
  141. Genevois, F. (1994). „Male Blue Petrels reveal their body mass when calling”.Ethology Ecology and Evolution6(3), 377–83. o. [2007. december 24-i dátummal azeredetibőlarchiválva].DOI:10.1080/08927014.1994.9522988.(Hozzáférés: 2017. március 19.)
  142. Jouventin, Pierre (1999. június 1.). „Finding a parent in a king penguin colony: the acoustic system of individual recognition”.Animal Behaviour57(6), 1175–83. o.DOI:10.1006/anbe.1999.1086.PMID10373249.
  143. Templeton, Christopher N. (2005). „Allometry of Alarm Calls: Black-Capped Chickadees Encode Information About Predator Size”.Science308(5730), 1934–37. o.DOI:10.1126/science.1108841.PMID15976305.
  144. Miskelly, C. M. (1987. július 1.). „The identity of the hakawai”.Notornis34(2), 95–116. o.
  145. Murphy, Stephen (2003). „The breeding biology of palm cockatoos(Probosciger aterrimus):a case of a slow life history”.Journal of Zoology261(4), 327–39. o.DOI:10.1017/S0952836903004175.
  146. abSekercioglu, Cagan Hakki.szerk.: Josep del Hoyo, Andrew Elliott and David Christie (eds.): Foreword,Handbook of the Birds of the World,Volume 11: Old World Flycatchers to Old World Warblers.Barcelona: Lynx Edicions, 48. o. (2006).ISBN 84-96553-06-X
  147. Terborgh, John (2005). „Mixed flocks and polyspecific associations: Costs and benefits of mixed groups to birds and monkeys”.American Journal of Primatology21(2), 87–100. o.DOI:10.1002/ajp.1350210203.
  148. Hutto, Richard L. (1988. január 1.). „Foraging Behavior Patterns Suggest a Possible Cost Associated with Participation in Mixed-Species Bird Flocks”.Oikos51(1), 79–83. o.DOI:10.2307/3565809.JSTOR3565809.
  149. Au, David W. K. (1986. augusztus 1.). „Seabird interactions with Dolphins and Tuna in the Eastern Tropical Pacific”(PDF).The Condor88(3), 304–17. o.DOI:10.2307/1368877.
  150. Anne, O. (1983. június 1.). „Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya”.Behavioral Ecology and Sociobiology12(3), 181–90. o.DOI:10.1007/BF00290770.
  151. Gauthier-Clerc, Michael (2000). „Sleep-Vigilance Trade-off in Gadwall during the Winter Period”(PDF).The Condor102(2), 307–13. o. [2004. december 27-i dátummal azeredetibőlarchiválva].DOI:[0307:SVTOIG2.0.CO;2 10.1650/0010-5422(2000)102[0307:SVTOIG]2.0.CO;2].JSTOR1369642.
  152. Bäckman, Johan (2002. április 1.). „Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swiftApus apus”.The Journal of Experimental Biology205(7), 905–910. o.PMID11916987.
  153. Rattenborg, Niels C. (2006). „Do birds sleep in flight?”.Die Naturwissenschaften93(9), 413–25. o.DOI:10.1007/s00114-006-0120-3.PMID16688436.
  154. Milius, S. (1999. február 6.). „Half-asleep birds choose which half dozes”.Science News Online155(6), 86. o.DOI:10.2307/4011301.JSTOR4011301.
  155. Beauchamp, Guy (1999). „The evolution of communal roosting in birds: origin and secondary losses”.Behavioural Ecology10(6), 675–87. o.DOI:10.1093/beheco/10.6.675.
  156. Buttemer, William A. (1985). „Energy relations of winter roost-site utilization by American goldfinches(Carduelis tristis)”(PDF).Oecologia68(1), 126–32. o.DOI:10.1007/BF00379484.
  157. Buckley, F. G. (1968. január 1.). „Upside-down Resting by Young Green-Rumped Parrotlets(Forpus passerinus)”.The Condor70(1), 89. o.DOI:10.2307/1366517.
  158. Carpenter, F. Lynn (1974). „Torpor in an Andean Hummingbird: Its Ecological Significance”.Science183(4124), 545–47. o.DOI:10.1126/science.183.4124.545.PMID17773043.
  159. McKechnie, Andrew E. (2007). „Torpor in an African caprimulgid, the freckled nightjarCaprimulgus tristigma”.Journal of Avian Biology38(3), 261–66. o.DOI:10.1111/j.2007.0908-8857.04116.x.
  160. Frith, C.B (1981). „Displays of Count Raggi's Bird-of-ParadiseParadisaea raggianaand congeneric species”.Emu81(4), 193–201. o.DOI:10.1071/MU9810193.
  161. Freed, Leonard A. (1987). „The Long-Term Pair Bond of Tropical House Wrens: Advantage or Constraint?”.The American Naturalist130(4), 507–25. o.DOI:10.1086/284728.
  162. Gowaty, Patricia A. (1983). „Male Parental Care and Apparent Monogamy among Eastern Bluebirds(Sialia sialis)”.The American Naturalist121(2), 149–60. o.DOI:10.1086/284047.
  163. Westneat, David F. (2003). „Extra-pair paternity in birds: Causes, correlates, and conflict”.Annual Review of Ecology, Evolution, and Systematics34,365–96. o.DOI:10.1146/annurev.ecolsys.34.011802.132439.[halott link]
  164. Gowaty, Patricia A. (1998). „Ultimate causation of aggressive and forced copulation in birds: Female resistance, the CODE hypothesis, and social monogamy”.American Zoologist38(1), 207–25. o.DOI:10.1093/icb/38.1.207.
  165. T.R. Birkhead, P. Møller (1993). „Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals”.Biological Journal of the Linnean Society50,295–311. o.DOI:10.1111/j.1095-8312.1993.tb00933.x.
  166. Sheldon, B (1994). „Male Phenotype, Fertility, and the Pursuit of Extra-Pair Copulations by Female Birds”.Proceedings of the Royal Society B257(1348), 25–30. o.DOI:10.1098/rspb.1994.0089.
  167. Wei, G (2005). „Copulations and mate guarding of the Chinese Egret”.Waterbirds28(4), 527–30. o.DOI:[527:CAMGOT2.0.CO;2 10.1675/1524-4695(2005)28[527:CAMGOT]2.0.CO;2].
  168. Bagemihl, Bruce.Biological exuberance: Animal homosexuality and natural diversity.New York: St. Martin's, 1999. pp. 479–655. One hundred species are described in detail.
  169. Short, Lester L..Birds of the World and their Behavior.New York: Henry Holt and Co (1993).ISBN 0-8050-1952-9
  170. Burton, R.Bird Behavior.Alfred A. Knopf, Inc (1985).ISBN 0-394-53957-5
  171. Schamel, D (2004). „Mate guarding, copulation strategies and paternity in the sex-role reversed, socially polyandrous red-necked phalaropePhalaropus lobatus”(PDF).Behaviour Ecology and Sociobiology57(2), 110–18. o. [2020. március 28-i dátummal azeredetibőlarchiválva].DOI:10.1007/s00265-004-0825-2.(Hozzáférés: 2017. március 22.)
  172. H. Kokko, M. Harris, S. Wanless (2004). „Competition for breeding sites and site-dependent population regulation in a highly colonial seabird, the common guillemotUria aalge”.Journal of Animal Ecology73(2), 367–76. o.DOI:10.1111/j.0021-8790.2004.00813.x.
  173. L. Booker, M. Booker (1991). „Why Are Cuckoos Host Specific?”.Oikos57(3), 301–09. o.DOI:10.2307/3565958.JSTOR3565958.
  174. abHansell M (2000).Bird Nests and Construction Behaviour.University of Cambridge PressISBN 0-521-46038-7
  175. L. Lafuma, M. Lambrechts, M. Raymond (2001). „Aromatic plants in bird nests as a protection againstblood-suckingflying insects?”.Behavioural Processes56(2), 113–20. o.DOI:10.1016/S0376-6357(01)00191-7.
  176. Warham, J. (1990)The Petrels: Their Ecology and Breeding SystemsLondon:Academic PressISBN 0-12-735420-4.
  177. Jones DN, Dekker, René WRJ, Roselaar, Cees S (1995).The Megapodes.Bird Families of the World 3.Oxford University Press:Oxford.ISBN 0-19-854651-3
  178. AnAge: The animal ageing and longevity database.Human Ageing and Genomics Resources. (Hozzáférés: 2014. szeptember 26.)
  179. Animal diversity web.University of Michigan, Museum of Zoology. (Hozzáférés: 2014. szeptember 26.)
  180. Elliot A (1994). "Family Megapodiidae (Megapodes)" inHandbook of the Birds of the World.Volume 2; New World Vultures to Guineafowl(eds del Hoyo J, Elliott A, Sargatal J) Lynx Edicions:Barcelona.ISBN 84-87334-15-6
  181. Metz VG, Schreiber EA (2002). "Great Frigatebird(Fregata minor)"InThe Birds of North America, No 681,(Poole, A. and Gill, F., eds) The Birds of North America Inc: Philadelphia
  182. Young, Euan.Skua and Penguin. Predator and Prey..Cambridge University Press, 1994, p. 453.
  183. Ekman, J. (2006). „Family living amongst birds”.Journal of Avian Biology37(4), 289–98. o.DOI:10.1111/j.2006.0908-8857.03666.x.
  184. Cockburn A. Why do so many Australian birds cooperate? Social evolution in the Corvida,Frontiers in Population Ecology.Melbourne: CSIRO, 21–42. o. (1996)
  185. Cockburn, Andrew (2006). „Prevalence of different modes of parental care in birds”.Proceedings of the Royal Society B273(1592), 1375–83. o.DOI:10.1098/rspb.2005.3458.PMID16777726.PMC1560291.
  186. Gaston AJ (1994). Ancient Murrelet(Synthliboramphus antiquus).InThe Birds of North America, No. 132(A. Poole and F. Gill, Eds.). Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.
  187. H.C. Schaefer, et al. (2004). „Life-history of two AfricanSylviawarblers: low annual fecundity and long post-fledging care”.Ibis146(3), 427–37. o.DOI:10.1111/j.1474-919X.2004.00276.x.
  188. J.C Alonso, L.M. Bautista, J.A. Alonso (2004). „Family-based territoriality vs flocking in wintering common cranesGrus grus”.Journal of Avian Biology35(5), 434–44. o.DOI:10.1111/j.0908-8857.2004.03290.x.
  189. Davies N (2000).Cuckoos, Cowbirds and other Cheats.T. & A. D. Poyser:LondonISBN 0-85661-135-2
  190. Sorenson, M. (1997). „Effects of intra- and interspecific brood parasitism on a precocial host, the canvasback,Aythya valisineria”.Behavioral Ecology8(2), 153–61. o.DOI:10.1093/beheco/8.2.153.
  191. C.N. Spottiswoode, J.F.R. Colebrook-Robjent (2007). „Egg puncturing by the brood parasitic Greater Honeyguide and potential host counteradaptations”.Behavioral Ecology18(4), 792–799. o.DOI:10.1093/beheco/arm025.
  192. abEdwards, DB (2012). „Immune investment is explained by sexual selection and pace-of-life, but not longevity in parrots (Psittaciformes).”.PLOS ONE7(12), e53066. o.DOI:10.1371/journal.pone.0053066.PMID23300862.PMC3531452.
  193. Doutrelant, C (2012. január 1.). „Female plumage coloration is sensitive to the cost of reproduction. An experiment in blue tits.”.Journal of Animal Ecology81(1), 87–96. o.DOI:10.1111/j.1365-2656.2011.01889.x.PMID21819397.
  194. (2009) „The genetics of inbreeding depression”.Nat. Rev. Genet.10(11), 783–96. o.DOI:10.1038/nrg2664.PMID19834483.
  195. (1987) „The molecular basis of the evolution of sex”.Adv. Genet.24,323–70. o.DOI:10.1016/s0065-2660(08)60012-7.PMID3324702.
  196. Michod, R.E. (1994). "Eros and Evolution: A Natural Philosophy of Sex" Addison-Wesley Publishing Company, Reading, Massachusetts.ISBN 978-0201442328
  197. (2012) „Inbreeding causes early death in a passerine bird”.Nat Commun3,863. o.DOI:10.1038/ncomms1870.PMID22643890.
  198. (2002) „Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches”.Evolution56(6), 1229–39. o.DOI:10.1111/j.0014-3820.2002.tb01434.x.PMID12144022.
  199. S.A. Kingma, M.L. Hall, A. Peters (2013). „Breeding synchronization facilitates extrapair mating for inbreeding avoidance”.Behavioral Ecology24(6), 1390–1397. o.DOI:10.1093/beheco/art078.
  200. (2008) „Dispersal as a means of inbreeding avoidance in a wild bird population”.Proc. Biol. Sci.275(1635), 703–11. o.DOI:10.1098/rspb.2007.0989.PMID18211876.PMC2596843.
  201. (2012) „Inbreeding avoidance mechanisms: dispersal dynamics in cooperatively breeding southern pied babblers”.J Anim Ecol81(4), 876–83. o.DOI:10.1111/j.1365-2656.2012.01983.x.PMID22471769.
  202. (2015) „How cooperatively breeding birds identify relatives and avoid incest: New insights into dispersal and kin recognition”.BioEssays37(12), 1303–8. o.DOI:10.1002/bies.201500120.PMID26577076.
  203. abM. Clout, J. Hay (1989). „The importance of birds as browsers, pollinators and seed dispersers in New Zealand forests”.New Zealand Journal of Ecology12,27–33. o.
  204. Gary Stiles, F. (1981). „Geographical Aspects of Bird-Flower Coevolution, with Particular Reference to Central America”.Annals of the Missouri Botanical Garden68(2), 323–51. o.DOI:10.2307/2398801.JSTOR2398801.
  205. E. Temeles (2002). „The Role of Flower Width in Hummingbird Bill Length–Flower Length Relationships”.Biotropica34(1), 68–80. o.DOI:10.1111/j.1744-7429.2002.tb00243.x.
  206. S. Wainright, et al. (1998). „Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska”.Marine Ecology131(1), 63–71. o. [2020. március 28-i dátummal azeredetibőlarchiválva].DOI:10.1007/s002270050297.(Hozzáférés: 2017. március 29.)
  207. A. Bosman, A. Hockey (1986). „Seabird guano as a determinant of rocky intertidal community structure”.Marine Ecology Progress Series32,247–57. o.DOI:10.3354/meps032247.
  208. William J. Bond, William G. Lee, Joseph M. Craine (2004). „Plant structural defences against browsing birds: a legacy of New Zealand's extinct moas”.Oikos104(3), 500–08. o.DOI:10.1111/j.0030-1299.2004.12720.x.
  209. Bonney, Rick.Handbook of Bird Biology,Second, Princeton University Press (2004).ISBN 0-938027-62-X
  210. Dean W, Siegfried R, MacDonald I (1990). "The Fallacy, Fact, and Fate of Guiding Behavior in the Greater Honeyguide".Conservation Biology4(1) 99–101.Doi-PDF
  211. R. Singer, Y. Yom-Tov (1988). „The Breeding Biology of the House Sparrow Passer domesticus in Israel”.Ornis Scandinavica19(2), 139–44. o.DOI:10.2307/3676463.JSTOR3676463.
  212. Dolbeer, R (1990). „Ornithology and integrated pest management: Red-winged blackbirdsAgleaius phoeniceusand corn”.Ibis132(2), 309–22. o.DOI:10.1111/j.1474-919X.1990.tb01048.x.
  213. R. Dolbeer, J. Belant, J. Sillings (1993). „Shooting Gulls Reduces Strikes with Aircraft at John F. Kennedy International Airport”.Wildlife Society Bulletin21,442–50. o.
  214. "Will Wind Turbines Ever Be Safe for Birds?",by Emma Bryce,Audobon,USNational Audobon Society,16 March 2016. Accessed 19 March 2017.
  215. Reed, KD, et al. (2003). „Birds, Migration and Emerging Zoonoses: West Nile Virus, Lyme Disease, Influenza A and Enteropathogens”.Clinical medicine & research1(1), 5–12. o.DOI:10.3121/cmr.1.1.5.PMID15931279.PMC1069015.
  216. Brown, Lester. 3: Moving Up the Food Chain Efficiently.,Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables and Rising Temperatures[archivált változat].earthscan (2005).ISBN 978-1-84407-185-2.Hozzáférés ideje: 2017. március 30. [archiválás ideje: 2016. március 3.]
  217. A. Simeone, X. Navarro (2002). „Human exploitation of seabirds in coastal southern Chile during the mid-Holocene”.Rev. Chil. Hist. Nat75(2), 423–31. o.DOI:10.4067/S0716-078X2002000200012.
  218. Aidan Keane, M.de L. Brooke, P.J.K. McGowan (2005). „Correlates of extinction risk and hunting pressure in gamebirds (Galliformes)”.Biological Conservation126(2), 216–33. o.DOI:10.1016/j.biocon.2005.05.011.
  219. The Guano War of 1865–1866.World History at KMLA. (Hozzáférés: 2007. december 18.)
  220. R. Cooney. P. Jepson (2006). „The international wild bird trade: what's wrong with blanket bans?”.Oryx40(1), 18–23. o.DOI:10.1017/S0030605306000056.
  221. M. Manzi, O. T. Coomes (2002). „Cormorant fishing in Southwestern China: a Traditional Fishery under Siege. (Geographical Field Note)”.Geographic Review92(4), 597–603. o.DOI:10.2307/4140937.JSTOR4140937.
  222. Pullis La Rouche, G. (2006). Birding in the United States: a demographic and economic analysis.Waterbirds around the world.Eds. G.C. Boere, C.A. Galbraith and D.A. Stroud.The Stationery Office,Edinburgh, UK. pp. 841–46.JNCC.gov.ukArchiválva2011. március 4-idátummal aWayback Machine-ben, PDF
  223. Chamberlain, DE, et al. (2005). „Annual and seasonal trends in the use of garden feeders by birds in winter”.Ibis147(3), 563–75. o.DOI:10.1111/j.1474-919x.2005.00430.x.(Hozzáférés: 2017. március 31.)
  224. S. Routledge, K. Routledge (1917). „The Bird Cult of Easter Island”.Folklore28(4), 337–55. o.DOI:10.1080/0015587X.1917.9719006.
  225. Lukas, SE, et al. (1992). „Marihuana attenuates the rise in plasma ethanol levels in human subjects”.Neuropsychopharmacology7(1), 77–81. o.PMID1326277.
  226. Ingersoll, Ernest (1923).Archive.org,"Birds in legend, fable and folklore". Longmans, Green and co. p. 214
  227. Thankappan Nair, P. (1974). „The Peacock Cult in Asia”.Asian Folklore Studies33(2), 93–170. o.DOI:10.2307/1177550.JSTOR1177550.
  228. Smith, S. (2011). „Generative landscapes: the step mountain motif in Tiwanaku iconography.”(Automatic PDF download).Ancient America12,1–69. o. [2019. január 6-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2017. április 1.)
  229. Hauser, A. J. (1985). „Jonah: In Pursuit of the Dove”.Journal of Biblical Literature104(1), 21–37. o.DOI:10.2307/3260591.JSTOR3260591.
  230. Meighan, C. W. (1966). „Prehistoric Rock Paintings in Baja California”.American Antiquity31(3), 372–92. o.DOI:10.2307/2694739.JSTOR2694739.
  231. Tennyson A, Martinson P (2006).Extinct Birds of New ZealandTe Papa Press, WellingtonISBN 978-0-909010-21-8
  232. Clarke, CP (1908). „A Pedestal of the Platform of the Peacock Throne”.The Metropolitan Museum of Art Bulletin3(10), 182–83. o.DOI:10.2307/3252550.JSTOR3252550.
  233. Boime, Albert (1999). „John James Audubon: a birdwatcher's fanciful flights”.Art History22(5), 728–55. o.DOI:10.1111/1467-8365.00184.
  234. Chandler, A. (1934). „The Nightingale in Greek and Latin Poetry”.The Classical Journal30(2), 78–84. o.JSTOR3289944.
  235. Lasky, E. D. (1992. március 1.). „A Modern Day Albatross: The Valdez and Some of Life's Other Spills”.The English Journal81(3), 44–46. o.DOI:10.2307/820195.JSTOR820195.
  236. Carson, A (1998). „Vulture Investors, Predators of the 90s: An Ethical Examination”.Journal of Business Ethics17(5), 543–55. o.DOI:10.1023/A:1017974505642.[halott link]
  237. Enriquez PL, Mikkola H (1997). "Comparative study of general public owl knowledge in Costa Rica, Central America and Malawi, Africa". pp. 160–66 In: J.R. Duncan, D.H. Johnson, T.H. Nicholls, (Eds).Biology and conservation of owls of the Northern Hemisphere. General Technical Report NC-190,USDA Forest Service, St. Paul, Minnesota. 635 pp.
  238. Lewis DP (2005).Owlpages.com,Owls in Mythology and Culture. Retrieved on 15 September 2007
  239. Dupree, N (1974). „An Interpretation of the Role of the Hoopoe in Afghan Folklore and Magic”.Folklore85(3), 173–93. o.DOI:10.1080/0015587X.1974.9716553.JSTOR1260073.
  240. Matthew Head (1997). „Birdsong and the Origins of Music”.Journal of the Royal Musical Association122(1), 1–23. o.DOI:10.1093/jrma/122.1.1.
  241. Clark, Suzannah.Music Theory and Natural Order from the Renaissance to the Early Twentieth Century.Cambridge University Press (2001).ISBN 0-521-77191-9
  242. Reich, Ronni. „NJIT professor finds nothing cuckoo in serenading our feathered friends”,Star Ledger,2010. október 15. (Hozzáférés: 2011. június 19.)
  243. Sibley, Charles.Phylogeny and classification of birds.New Haven: Yale University Press (1990).ISBN 0-300-04085-7
  244. Mayr, Ernst.Species Taxa of North American Birds: A Contribution to Comparative Systematics,Publications of the Nuttall Ornithological Club, no. 9. Cambridge, Mass.: Nuttall Ornithological Club (1970).OCLC517185
  245. Jarvis, E.D., et al. (2014). „Whole-genome analyses resolve early branches in the tree of life of modern birds”.Science346(6215), 1320–1331. o.DOI:10.1126/science.1253451.PMID25504713.PMC4405904.
  246. Prum, R.O.et al.(2015)A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing.Nature 526, 569–573.
  247. BirdLife International announces more Critically Endangered birds than ever before.BirdLife International,2009. május 14. [2013. június 17-i dátummal azeredetibőlarchiválva]. (Hozzáférés: 2009. május 15.)
  248. Kinver, Mark. „Birds at risk reach record high”,BBC News Online,2009. május 13. (Hozzáférés: 2009. május 15.)
  249. Norris K, Pain D (eds, 2002).Conserving Bird Biodiversity: General Principles and their ApplicationCambridge University Press.ISBN 978-0-521-78949-3
  250. Brothers, NP (1991). „Albatross mortality and associated bait loss in the Japanese longline fishery in the southern ocean”.Biological Conservation55(3), 255–68. o.DOI:10.1016/0006-3207(91)90031-4.
  251. WD. urster, C. Wurster, W. Strickland (1965. július 1.). „Bird Mortality Following DDT Spray for Dutch Elm Disease”.Ecology46(4), 488–99. o.DOI:10.2307/1934880.;C. F. Wurster, D. H. Wurster, W. N. Strickland (1965). „Bird Mortality after Spraying for Dutch Elm Disease with DDT”.Science148(3666), 90–91. o.DOI:10.1126/science.148.3666.90.PMID14258730.
  252. Blackburn, T, et al. (2004. szeptember 24.). „Avian Extinction and Mammalian Introductions on Oceanic Islands”.Science305(5692), 1955–58. o.DOI:10.1126/science.1101617.PMID15448269.
  253. Fuller E (2000).Extinct Birds(2nd ed.).Oxford University Press,Oxford, New York.ISBN 0-19-850837-9
  254. Steadman D (2006).Extinction and Biogeography in Tropical Pacific Birds,University of Chicago Press.ISBN 978-0-226-77142-7
  255. S. Butchart, A. Stattersfield, N. Collar (2006). „How many bird extinctions have we prevented?”.Oryx40(3), 266–79. o. [2011. augusztus 10-i dátummal azeredetibőlarchiválva].DOI:10.1017/S0030605306000950.(Hozzáférés: 2017. április 5.)

Fordítás

[szerkesztés]

Ez a szócikk részben vagy egészben aBirdcímű angol Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

További információk

[szerkesztés]

Kapcsolódó szócikkek

[szerkesztés]