Uranio arricchito
L'uranio arricchitoè una miscela diisotopidell'uranio,che differisce dall'uranio naturale estratto dalle miniere per un maggior contenuto dell'isotopo235U, ottenuto attraverso il processo di separazione isotopica. Il235U è infatti l'unico isotopo esistente in natura in quantità apprezzabili che possa essere sottoposto afissione nucleareinnescata daneutroni termici;nell'uranio naturale, invece, la percentuale di questo isotopo è, in peso, circa 0,72%, mentre la maggior parte del materiale è composta dall'isotopo238U.[1]
Introduzione
modificaL'uranio arricchito è un componente che può essere utilizzato per learmi nucleari,ed è molto spesso indispensabile per produzione dienergia nucleare.L'Agenzia internazionale per l'energia atomica(IAEA) è l'agenzia internazionale sotto gli auspici delleNazioni Uniteche ha tra i suoi scopi il compito di monitorare e controllare le forniture di uranio arricchito ed i processi correlati nello sforzo di assicurare la sicurezza della produzione di energia nucleare a livello mondiale ed al contempo mitigare la diffusione di tecnologie, materiali ed attrezzature che possano consentire la costruzione di armi nucleari (proliferazione nucleare).
Durante ilProgetto Manhattanall'uranio arricchito venne dato il nome in codiceoralloy,una versione abbreviata diOak Ridgealloy,con riferimento alla ubicazione degli impianti dove l'uranio veniva arricchito. Il termine oralloy viene occasionalmente utilizzato per riferirsi all'uranio arricchito.
L'isotopo238U che rimane dopo l'arricchimento dell'uranio ed il riprocessamento del combustibile esausto proveniente dai reattori nucleari è noto comeuranio impoverito(in inglese "Depleted Uranium" o DU), ed è considerevolmente menoradioattivoanche rispetto all'uranio naturale. Esso è estremamente denso e viene correntemente impiegato nel munizionamento anticarro, nel nucleo deiproiettili penetranti la corazza(con capacità di trasferire grandi quantità dienergia cineticaa una superficie molto piccola, incrementando così di molto l'attrito e trasformando la decelerazione in calore che fonde l'acciaio), e altre applicazioni che richiedono metalli molto densi.
L'uranio arricchito nel ciclo del combustibile nucleare
modificaA partire dall'uraniopurificato, si ottiene il combustibile arricchito (al 3,5% di U235), che poi viene utilizzato come combustibile nei reattori. Oltre all'uranio arricchito, il processo produce grandi quantità diuranio impoverito.
Gradi di arricchimento
modificaUranio altamente arricchito
modificaL'uranio altamente arricchito(ininglesehighly enriched uraniumo HEU) ha una concentrazione dell'isotopo235U pari o superiore al 20%.[2]
L'uranio fissile presente nelle armi nucleari abitualmente contiene circa l'85% o più di235U, ed è noto come uranio di livello militare (weapons-grade), anche se basta circa un 20% di arricchimento per costruire unabomba sporca,molto inefficiente (noto comeweapon-usable). Tuttavia, anche un arricchimento molto minore può sostenere una reazione a catena ma ovviamente- lamassa criticarichiesta aumenta rapidamente. Comunque, l'utilizzo sapiente dell'implosione e dei riflettori di neutroni, può permettere la costruzione di un'arma con un quantitativo di uranio minore rispetto alla abituale massa critica per il suo livello di arricchimento, anche se questo potrebbe avvenire più probabilmente in un paese che già possiede un'estensiva esperienza nello sviluppo di armi nucleari. La presenza di un eccesso dell'isotopo238U rende meno veloce il decorso dellareazione nucleare a catenache è determinante nel fornire potenza esplosiva all'arma. La massa critica per un "core" di uranio altamente arricchito (all'85%) è di circa 50 chilogrammi.
L'uranio altamente arricchito (HEU) può essere usato anche in unreattore a neutroni veloci,come pure nei reattori deisommergibili nucleari,dove viene arricchito a livelli oscillanti dal 50% di235U, a oltre il 90% a seconda del reattore. Il primo reattore veloce sperimentaleFermi 1utilizzava uranio arricchito contenente il 26,5% di235U.
Uranio a basso arricchimento
modificaLa miscela di isotopi nota comeuranio a basso arricchimento(iningleselow-enriched uraniumo LEU) ha una concentrazione di235U inferiore al 20%. Destinata all'utilizzo nelle versioni commerciali direattore nucleare ad acqua leggera,il tipo più comune di reattori di potenza nel mondo, l'uranio viene arricchito ad una concentrazione tra il 3% ed il 5% di235U. La miscela LEU "fresca" impiegata in molti tipi direattore nucleare da ricerca,è abitualmente arricchita con concentrazioni di U-235 dal 12% al 19,75%, ed attualmente il secondo livello di concentrazione sta sostituendo i combustibili HEU quando gradualmente si passa ai LEU.
Uranio lievemente arricchito
modificaLa miscela d'isotopi nota comeuranio lievemente arricchito(iningleseslightly enriched uraniumo SEU) ha una concentrazione di235U tra lo 0,9% ed il 2%.
Questa bassa concentrazione viene utilizzata per rimpiazzare il combustibile ad uranio naturale (NU) in alcuni tipi direattore nucleare ad acqua pesantecome ilCANDU.Il costo del combustibile nucleare viene ridotto perché si utilizza una maggiore percentuale dell'uranio estratto dalla miniera e occorrono meno passaggi collegati e processi per alimentare il reattore. Questo in effetti riduce la quantità di combustibile impiegato e di conseguenza i costi di gestione di qualsiasiscoria nucleare.
La miscela d'isotopi nota come uranio di recupero (iiningleserecovered uraniumo RU) è una variante della SEU. Viene adoperata nelciclo del combustibile nucleareche comporta il recupero di combustibile usato recuperato dalreattore nucleare ad acqua leggera(LWR). Il combustibile esaurito proveniente dai LWR tipicamente contiene più isotopo U-235 rispetto all'uranio naturale, e dunque potrebbe essere utilizzato per alimentare reattori che di base utilizzano l'uranio naturale come combustibile.
Metodi di separazione degli isotopi
modificaLa separazione degli isotopi è un'operazione alquanto difficile e ad alto consumo energetico. L'arricchimento dell'uranio è difficile perché i due isotopi sono molto simili nel loro peso atomico: lo235U è soltanto un 1,26% più leggero rispetto allo238U. Alcune tecniche di produzione applicate all'arricchimento sono state usate, e diverse altre vengono investigate. In genere questi metodi sfruttano le piccole differenze inpeso atomicodei vari isotopi. Alcune ricerche allo studio sfruttano le recenti tecniche dellarisonanza magnetica nucleare,comunque non è sicuro se alcuno di questi nuovi processi allo studio potrà essere portato alla larga scala necessaria per produrre uranio arricchito con scopi commerciali o militari.
Una caratteristica comune a tutti gli schemi a larga scala di arricchimento è che essi impiegano un numero di stadi successivi identici che produrranno a mano a mano sempre maggiori concentrazioni di235U. Ogni stadio concentra il prodotto dei precedenti stadi ulteriormente, prima di essere inviato al successivo. Similmente, i residui meno arricchiti di ogni stadio vengono rimescolati con lo stadio precedente per l'ulteriore processamento. Questo sistema di arricchimento sequenziale è noto comecascata.
Diffusione termica
modificaL'arricchimento dell'uranio mediantediffusione termica(in inglesethermal diffusion) utilizza il trasferimento di calore attraverso un sottile velo di liquido o gas per ottenere la separazione isotopica. Il processo sfrutta il fatto che le molecole di gas235U sono più leggere e diffonderanno verso la superficie calda, mentre le molecole più pesanti di gas238U diffonderanno verso la superficie fredda. L'impianto S-50 delProgetto Manhattan,localizzato adOak Ridge,venne usato durante laSeconda guerra mondialeper preparare materiali che alimentavano il processo EMIS. Questa procedura venne abbandonata in favore della diffusione gassosa.
Diffusione gassosa
modificaLadiffusione gassosaè una tecnologia usata per produrre uranio arricchito, costringendo l'esafluoruro di uraniogassoso (Hex) attraverso una serie dimembrane.Questo produce una lieve separazione tra le molecole che contengono235U e238U. Durante laGuerra Fredda,la diffusione gassosa giocò un ruolo fondamentale come tecnica per l'arricchimento dell'uranio, anche se attualmente è stata completamente sostituita con nuovi metodi.
Centrifuga a gas
modificaIl processo di arricchimento dell'uranio tramitecentrifuga a gasutilizza un gran numero di cilindri rotanti in serie e formazioni parallele. Questa rotazione crea una forte accelerazione centrifuga in modo che le molecole di gas più pesanti, contenenti238U si muovono verso l'esterno del cilindro e le molecole di gas più leggero, con maggiore concentrazione di235U si raccolgono presso il centro. Per ottenere la stessa separazione isotopica si richiede molta meno energia rispetto al vecchio metodo della diffusione gassosa, in gran parte soppiantato.
La centrifuga Zippe
modificaLacentrifuga Zipperappresenta un miglioramento della classica centrifuga a gas e la differenza primaria consiste nel riscaldamento. Il fondo dei cilindri rotanti viene riscaldato, producendo correnti che provocano lo spostamento di235U verso la parte superiore del cilindro, dove viene raccolto tramite delle palette. Questa centrifuga implementata viene commercialmente utilizzata dallaUrencoper produrre combustibile nucleare e fu utilizzata dalPakistannell'ambito del suo programma sulle armi nucleari[senza fonte].Il governo pakistano vendette la tecnologia Zippe allaCorea del norde all'Iranconsentendogli di sviluppare la loro industria nucleare[senza fonte].
Processi aerodinamici
modificaIprocessi di arricchimento aerodinamicoincludono le tecniche "ugello Becker a getto", sviluppate da E.W. Becker e colleghi, e un processo di separazione che sfrutta l'utilizzo deltubo di Ranque-Hilsch.Questi processi di separazioneaerodinamicadipendono dalla diffusione legata ai gradienti di pressione, come nel caso della centrifuga a gas. In effetti, i processi aerodinamici possono essere considerati come centrifughe non rotanti. L'aumento delle forze centrifughe viene raggiunto diluendo UF6conidrogenooeliocome gas di trasporto che permette di ottenere una velocità di flusso molto superiore rispetto all'uso di esafluoruro di uranio puro. InSudafricalaNECSA(Nuclear Enrichment Corporation of South Africa) sviluppò e impiegò l'Helikon vortex separation processbasato sul tubo di Ranque-Hilsch e un impianto dimostrativo fu costruito inBrasiledallaNUCLEI,un consorzio diretto da "Industrias Nucleares do Brasil" che utilizzava il processo di separazione con ugello. Entrambi i metodi richiedono il consumo di molta energia e il recupero di calore dagli scarti; nessuno dei due viene attualmente utilizzato.
Separazione isotopica elettromagnetica
modificaIlprocesso di separazione isotopica elettromagnetica(EMIS) consiste per prima cosa nel vaporizzare l'uranio metallico e quindi provocare unaionizzazioneche produca ioni carichi positivamente. Questi vengono quindi accelerati e successivamente deflessi dacampi magneticisui loro rispettivi bersagli di collimazione. Unospettrometro di massasu scala produttiva chiamatocalutronefu sviluppato durante la seconda guerra mondiale per produrre parte di235U utilizzato per l'ordigno nucleareLittle Boy,che fu sganciato suHiroshimanel 1945. Propriamente il termine "Calutron" si applica a dispositivi multi stadio collocati in grandi ovali attorno a un potenteelettromagnete.La separazione magnetica è stata ampiamente abbandonata in favore di metodi più efficienti.
Processi laser
modificaIprocessi lasersono una possibile tecnologia di terza generazione in grado di richiedere minore dispendio energetico, minori costi di investimento e di utilizzo, quindi significativi vantaggi economici.[3]
L'AVLIS(Atomic Vapor Laser Isotope Separation) è un metodo che utilizza laser di opportuna frequenza per separare gli isotopi dell'uranio tramite la ionizzazione selettiva di transizioni iperfini. Il fascio laser è in grado di ionizzare solamente235U. Gli ioni prodotti, carichi positivamente, vengono quindi attratti da un elettrodo carico negativamente e si accumulano.
Un secondo metodo di separazione laser è conosciuto comeseparazione isotopica laser molecolare(MLIS,Molecular Laser Isotope Separation). In questo metodo, un laserinfrarossoviene diretto sull'esafluoruro di uraniogassoso, eccitando le molecole che contengono l'isotopo235U. Un secondo laser libera un atomo difluoro,producendopentafluoruro di uranioche precipita separandosi dalla fase gassosa.
Un metodo molecolare australiano chiamatoSILEX(Separation of Isotopes by Laser EXcitation) e che utilizza UF6è apparentemente completamente differente da qualunque altro metodo finora utilizzato, secondo la Silex Systems Ltd che lo ha sviluppato.[4]I dettagli riguardanti il processo attualmente non sono ancora noti. Dopo un lungo periodo di sviluppo da parte della U.S. enrichment companyUSECche acquistò e quindi cedette i diritti commerciali della tecnologia, laGeneral Electricfirmò un accordo commerciale con la Silex Systems nel 2006.[5]
Nessuno di questi processi è ancora pronto per l'utilizzo commerciale, sebbene il SILEX abbia raggiunto un buon livello di avanzamento.
Metodi chimici
modificaUnprocesso chimicosi è dimostrato utile in un impianto pilota, ma non viene attualmente utilizzato. Il processoCHEMEX[6]francese sfruttava una differenza molto piccola nella propensione dei due isotopi a modificare il loro stato divalenzainreazioni di ossidoriduzione,utilizzando fasi acquose e organiche immiscibili.
Un processo discambio ionicofu sviluppato dalla Asahi Chemical Company inGiapponeapplicando principi chimici simili, ma effettuava la separazione utilizzando unaresina a scambio ionico.[6]
Separazione al plasma
modificaIprocessi di separazione al plasma(PSP) sono una tecnica potenzialmente più efficiente di arricchimento dell'uranio e fanno uso dimagnetisuperconduttorie diplasma.Viene sfruttato il principio dellarisonanza ionica di ciclotroneper fornire energia selettivamente all'isotopo235U in un plasma contenente una miscela di ioni.[7]In Francia fu sviluppata una versione di separazione al plasma chiamata RCI (Résonance Cyclotron Ionique). I fondi per la RCI furono drasticamente ridotti nel 1986, e il programma venne sospeso all'incirca nel 1990, sebbene la RCI sia ancora utilizzata per la separazione degli isotopi stabili.
Unità di lavoro separativo
modificaL'unità di lavoro separativo(ULS oSWUdall'inglese Separation work unit) è una unità di misura complessa che risulta funzione della quantità di uranio trattata e del suo grado di arricchimento, e in quanto tale rappresenta l'estensione dell'aumento di concentrazione dell'isotopo235U relativo al resto dell'uranio.
Il lavoro separativo viene espresso in ULS,kgLS (o SW), o in kg UTA (dal tedescoUrantrennarbeit,lavoro separativo dell'uranio). Si ha quindi:
- 1 ULS = 1 kg LS = 1 kg UTA
- 1 kULS = 1tLS = 1 t UTA
- 1 MULS = 1 ktLS = 1 kt UTA
Più specificamente, l'unità di lavoro separativo espressa in chilogrammi corrisponde alla quantità dilavoronecessario all'arricchimento ed è perciò indicativa dell'energia spesa quando le quantità di materiale di alimentazione, degli scarti e del prodotto finale sono espresse in chilogrammi. Il lavoronecessario per separare una massadi materiale di alimentazione con concentrazionein una massadi prodotto a concentrazione,e scarti di massae concentrazioneè espresso in termini di unità di lavoro separativi necessarie, ricavate dall'espressione
doveè lafunzione valore,definita come
Il rapporto materiale da trattare/prodotto finale è dato dall'espressione
mentre il rapporto scarti/prodotto è dato dall'espressione
Per esempio, partendo da 100 chilogrammi di uranio naturale, necessitano circa 60 ULS per produrre 10 chilogrammi di uranio a basso arricchimento con contenuto in235U del 4,5%, con scarti allo 0,3%.
Il numero di unità di lavoro separativo prodotto dai processi di arricchimento è direttamente correlato all'ammontare di energia che gli stessi processi consumano. I moderni impianti a diffusione gassosa richiedono tipicamente da 2.400 a 2.500chilowattora(da 8.600 a 9.000MJ) di elettricità per ULS mentre gli impianti a centrifuga a gas richiedono appena da 50 a 60 chilowattora (da 180 a 220 MJ) di elettricità per ULS.
Esempio:
Una grande centrale nucleare con una capacità elettrica netta di 1.300 MW richiede annualmente circa 25.000 kg di LEU con una concentrazione di235U del 3,75%. Questa quantità di uranio viene prodotta a partire da circa 210.000 kg di uranio naturale utilizzando circa 120.000 ULS. Un impianto di arricchimento con una capacità di 1000 kULS/anno è perciò in grado di produrre l'uranio arricchito necessario all'alimentazione di circa otto grandi impianti nucleari.
Costi
Oltre alle unità di lavoro separativo fornite dai processi di arricchimento, l'altro parametro importante che deve essere considerato è la massa di uranio naturale necessaria per produrre la massa desiderata di uranio arricchito. Così come per il numero di ULS, la quantità di materiale di alimentazione richiesto dipenderà anche dal livello di arricchimento desiderato e dalla quantità di235U presente alla fine nell'uranio impoverito. Però, diversamente dal numero di ULS richiesto durante l'arricchimento che aumenta al diminuire dei livelli di235U nella fase impoverita, la quantità necessaria di uranio arricchito diminuirà al diminuire dell'235U presente alla fine nell'uranio impoverito.
Per esempio, nell'arricchimento per la produzione di LEU da utilizzare in un reattore ad acqua leggera tipicamente la fase arricchita contiene il 3,6% di235U (a confronto l'uranio naturale ne contiene lo 0,7%) mentre la fase impoverita contiene dallo 0,2% allo 0,3% di235U. Per produrre 1 kg di questo LEU sarebbero richiesti approssimativamente 8 kg di NU e 4,5 ULS se l'uranio impoverito contiene lo 0,3% di235U. D'altra parte, se la fase impoverita possiede solamente lo 0,2% di235U, allora sarebbero richiesti appena 6,7 kg di NU, ma pressappoco 5,7 ULS di arricchimento. In quanto l'ammontare di uranio naturale richiesto e il numero di ULS necessario durante l'arricchimento cambiano in modo opposto, se l'uranio naturale è a basso prezzo e i processi di arricchimento sono relativamente più costosi, quindi gli operatori tipicamente sceglieranno di lasciare più235U nell'uranio impoverito mentre se l'uranio naturale è relativamente più costoso rispetto all'arricchimento, si opterà per la scelta opposta.
IlWISE Uranium Projectha ideato un calcolatore per l'arricchimento dell'uranio utilizzabile on linequi.
Impoverimento
modificaL'impoverimento è l'altra faccia della medaglia del processo di arricchimento: poiché l'uranio raffinato (yellowcake) contiene solo lo 0,7% di235U, è necessaria una grande quantità di yellowcake da cui estrarre il poco235U presente, fino a raggiungere la quota di arricchimento necessario. L'uranio da cui viene tolto l'235U è detto uranio impoverito, che è dunque uno scarto del processo di arricchimento e non un prodotto voluto. In grandissima parte l'uranio impoverito è costituito da238U.
L'uranio altamente arricchito utilizzato come materia prima può contenere isotopi indesiderati come l'234U,un isotopo minore dell'uranio naturale; durante il processo di arricchimento, la sua concentrazione aumenta ma resta abbastanza al di sotto dell'1%. Alte concentrazioni di236U sono un sottoprodotto dell'irradiazione in un reattore e possono essere contenute nell'HEU, in relazione al modo in cui è stato prodotto. L'HEU rilavorato proveniente da reattori per la produzione di materiale destinato ad armi nucleari (con una concentrazione di235U approssimativamente del 50%) può contenere concentrazioni elevate di236U che possono raggiungere il 25%, ottenendo alla fine approssimativamente una concentrazione dell'1,5% nel LEU ottenuto dall'impoverimento.236U è un veleno di neutroni, ovvero una sostanza che presenta elevato assorbimento indesiderato dineutroni;quindi occorre aumentare la concentrazione di235U nel LEU prodotto in modo da compensare la presenza di236U.
Le miscela di NU o DU può essere utilizzata per diluire i sottoprodotti indesiderati che possono essere contenuti nell'HEU di alimentazione. In relazione alla qualità della materia prima utilizzata, a tale scopo può essere utilizzato anche SEU a concentrazioni tipiche dell'1,5% di235U. Le concentrazioni degli isotopi indesiderati presenti nel LEU prodotto in alcuni casi possono essere superiori a quelle prescritte dalle specificheASTMriguardanti il combustibile nucleare, qualora venga utilizzato NU o DU. Perciò, l'impoverimento dell'HEU generalmente non può contribuire al problema della gestione dei rifiuti posto dall'esistenza di grandi depositi di uranio impoverito.
Il programma bilaterale Megatons to Megawatts si prefigge di convertire l'HEU stoccato dall'Unione Sovietica in ordigni bellici per alimentare alcunecentrali nuclearinegli Stati Uniti.[8]Dal 1995 fino a metà del 2005, 250 tonnellate di uranio altamente arricchito (circa equivalenti a 10.000 testate) furono riciclate in uranio a basso arricchimento. La meta da raggiungere entro il 2013 è fissata in 500 tonnellate.
Note
modifica- ^(EN)Definition (18)
- ^(EN)DefinizioneArchiviatoil 18 dicembre 2007 inInternet Archive.
- ^(EN)Laser enrichment could cut cost of nuclear power
- ^(EN)Silex Systems Ltd: New Laser Technology for Uranium EnrichmentArchiviatoil 14 maggio 2007 inInternet Archive.
- ^(EN)GE Signs Agreement With Silex Systems Of Australia To Develop Uranium Enrichment Technology
- ^ab(EN)Chemical and Ion Exchange Uranium Enrichment
- ^Dawson J.M., Kim H.C., Arnush D. et Al.,Isotope Separation in Plasmas by Use of Ion Cyclotron Resonance,Phys. Rev. Lett.37,1547-1550 (1976)
- ^(EN)Sito web del programmaArchiviatoil 4 marzo 2008 inInternet Archive.
Voci correlate
modificaAltri progetti
modifica- Wikimedia Commonscontiene immagini o altri file suuranio arricchito
Collegamenti esterni
modifica- (EN)IAEA - Nuclear Power Reactors in the World, 2012 edition(PDF), suwww-pub.iaea.org.
- (EN)Uranium Enrichment,suworld-nuclear.org.URL consultato il 22 novembre 2007(archiviato dall'url originaleil 12 febbraio 2013).
- (EN)Uranium Enrichment and Nuclear Weapon Proliferation,by Allan S. Krass, Peter Boskma, Boelie Elzen and Wim A. Smit, 296 pp., Published for SIPRI by Taylor and Francis Ltd, London, 1983,susipri.org.URL consultato il 4 gennaio 2007(archiviato dall'url originaleil 9 gennaio 2007).
- (EN)Silex Systems Ltd,susilex.com.
- (EN)Nuclear Issues Briefing Paper 33,suuic.com.au.URL consultato il 4 gennaio 2007(archiviato dall'url originaleil 4 gennaio 2007).
- (EN)Overview and history of U.S. HEU production,sufas.org.
Controllo di autorità | Thesaurus BNCF54177·LCCN(EN)sh00007034·J9U(EN,HE)987007286473705171 |
---|