Interazione gravitazionale

interazione fondamentale della natura
Disambiguazione– "Forza di gravità" rimanda qui. Se stai cercando il romanzo di Tess Gerritsen, vediForza di gravità (romanzo).

L'interazione gravitazionale(ogravitazioneogravitànel linguaggio comune) è una delle quattrointerazioni fondamentalinote infisica.

Ipianetidelsistema solareorbitano intorno alSolemediante la forza di gravità (l'immagine non è inscala).

Nellafisica classicanewtoniana,la gravità è interpretata come unaforza conservativadi attrazionea distanzaagente fra corpi dotati dimassa,secondo lalegge di gravitazione universale.La sua manifestazione più evidente nell'esperienza quotidiana è laforza peso.

Nellafisica moderna,l'attuale teoria più completa, larelatività generale,interpreta l'interazione gravitazionale come una conseguenza della curvatura dellospaziotempocreata dalla presenza di corpi dotati dimassaoenergia.Una piccola massa a grande velocità o una grande massa in quiete hanno lo stesso effetto sulla curvatura dello spaziotempo circostante. Ilcampo gravitazionaleche ne deriva è rappresentato matematicamente da untensore metrico,legato alla curvatura dello spaziotempo attraverso iltensore di Riemann.In questo ambito la forza peso, in particolare quella usuale che sperimentiamo in prossimità della superficie terrestre, è unaforza apparente,conseguenza della geometria dello spaziotempo indotta dalla massa della Terra.

Le prime spiegazioni di una forza agente capace di aggregare i corpi vennero formulate, nellafilosofia greca,all'interno di una visioneanimisticadella natura, come nella dottrina diEmpedocle,in cui domina l'alternanza di due princìpi,AmoreeOdio,o in quella diAnassagora,dove prevale l'azione ordinatrice di una Mente suprema (Nous).[1]

La visione antica dell'universo prevedeva quattrocerchi sublunari(terra,acqua,aria,fuoco) sui quali agiva la gravità terrestre, enove cerchidi sostanzaeterea(Luna,Venere,Mercurio,Sole,Marte,Giove,Saturno,Stelle fisse,Primo mobile) sospesi in alto e rivolti alla supremaIntelligenza motrice.

Platoneriteneva che lamateriafosse pervasa da unadynamis,cioè un'energiaintrinseca, che spinge il simile ad attrarre il simile.[1]Tale concezione fu ripresa daAristotele,per il quale tutto l'universo anela alla perfezione delprimo motoreimmobile (Dio). Questo anelito si esprime nel movimento circolare distelle,Sole,Lunaepianeti,giungendo tuttavia a corrompersi progressivamente fino a diventare rettilineo nella dimensione terrestresublunare.Soltanto in quest'ambito, dunque, alcuni corpi, quelli che Platone e Aristotele chiamavanogravi,risultano soggetti alla gravità: si trattava di composti deiquattro elementifondamentali (fuoco,aria,acqua,terra), mentre l'eterefluttuava al di sopra di essi. Secondo la teoria aristotelica dei luoghi naturali, tutto ciò che è terra tende a ritornare lì dove risiede la terra, ovvero al centro dell'universo; al di sopra vi è la sfera dell'acqua che attrae tutto ciò che è liquido; analogamente si comportano i cerchi dell'aria edel fuoco.[2]

Come i suoi contemporanei, Aristotele interpretava lafisicadell'universo deducendola dallafisiologiaumana, sostenendo ad esempio che oggetti di peso diverso cadessero a velocità diverse, inanalogiaall'esperienza dell'uomo che tenti di contrastare il peso di un sasso,[3]adottando così una prospettiva che, seppur contraddetta nelVI secolod.C. daGiovanni Filopono,continuerà a essere insegnata fino all'epoca di Galileo. Con lostoicismo,lo studio della gravità portò a scoprire una relazione tra il moto dellemareee i movimenti delSolee dellaLuna:l'universo è infatti concepito dagli stoici come un unico organismo vivente, animato dallopneuma,forza vitale che tutto pervade, che si esprime nella reciproca azione di un elemento attivo (heghemonikòn) e di uno passivo (hypàrchon) che ne subisce l'attrazione.[1]

Anche per ladottrina neoplatonica,ripresa dallateologia cristiana,il cosmo è animato dalLogosdivino, dal quale le stelle e i pianeti risultano attratti: nelMedioevoil loro movimento viene spiegato in particolare con l'azione di intelligenze motrici,ordinate gerarchicamente in un coro di angeli.Si tratta di un universo retto da un principioarmonicoche si irradia in ogni sua parte, strutturato perciò in manieraconcentricasecondo l'insegnamento aristotelico. A fondamento di quest'ordinegeometricoè postoDio,il quale lo governa attraverso un atto d'amore:la gravità, come forza d'amore, così descritta ad esempio daDantenell'ultimo verso dellaDivina Commedia.[4]

La nuova visioneeliocentricadell'universo in auge nelRinascimento

L'analogia neoplatonica tra Dio e ilSolecondurrà tuttavia lafilosofia rinascimentalea fare di quest'ultimo il centro di attrazione della Terra e dei pianeti.[5]InKeplero,il primo a descrivere in manieraellitticale loroorbite,permane la concezioneanimisticaeastrologicadell'universo, basata sulla corrispondenza armonica tra i cieli e la terra.[6]Egli interpretava la forza immateriale della gravità come una sorta di emanazionemagnetica.[1]

A partire dalSeicentola visione animistica della gravità verrà progressivamente sostituita da una puramentemeccanicista;Galileo Galileine fornì una descrizione limitata all'aspetto quantitativo e, riprendendo l'antica idea di Filopono, teorizzò che[7]facendocadere due corpidi masse differenti nello stesso momento, entrambi sarebbero arrivati al suolo in contemporanea.

Cartesionegò che la gravità consistesse in una forza intrinseca, spiegandola sulla base di vortici dieteree riconducendo ogni fenomeno fisico alprincipio di conservazione del moto,dato dalla massa per la velocità (mv).[1]Leibnizobietterà a Cartesio che laquantità di motonon bastava a definire l'essenza di unaforzae ripristinò il concettovitalisticodienergiaovis viva,espressa dal prodotto della massa per la velocità al quadrato (e=mv2): era questa per lui a essere conservata in natura.[8]

Isaac Newton

Un concetto di forza affine a quello di Cartesio era stato peraltro espresso da Newton, che fece dellamassa,cioè della quantità dimateria(data dalvolumeper ladensità) il concetto fondamentale dellameccanica gravitazionale:[1]quanto più è grande la massa di un corpo, tanto più potente è la sua forza di gravità.[9]Newtoncapì che la stessa forza che causa la caduta di una mela sullaTerramantiene i pianeti inorbitaattorno alSole,e laLunaattorno allaTerra.Egli così riabilitava in parte le concezioniastrologichedi Keplero:

«L'astrologia,pur abbandonando ilpoliteismo,aveva continuato non soltanto ad attribuire un significatomagicoai vecchi nomi divini, ma anche poteri tipicamente divini aipianeti,poteri che essa trattava come "influssi" calcolabili. Non ci si deve stupire del fatto che essa venisse rifiutata dagliaristotelicie da altrirazionalisti.Essi però la rifiutarono per i motivi in parte sbagliati e andarono troppo oltre nel loro rifiuto.

[...] La teoria newtoniana della gravitazione universale mostrò non solo che la Luna poteva influenzare "eventi sublunari"ma,[10]oltre a ciò, che alcuni corpi celesti superlunari esercitavano un influsso, un'attrazione gravitazionale, sulla Terra, e quindi sugli eventi sublunari, in contraddizione con la teoria aristotelica. Perciò Newton accettò, consapevolmente anche se con riluttanza, una dottrina che era stata rifiutata da alcuni dei migliori cervelli, Galileo incluso.»

Nel libroPhilosophiae Naturalis Principia Mathematica,del1687,Newton enunciò pertanto la legge di gravitazione universale, che dimostrò con il «metodo delle flussioni», un procedimento analogo alla derivazione. In seguitoHuygens,nel suoHorologium oscillatorium,chiarificò la natura delleforze centrifugheche impediscono ai pianeti di cadere sul sole pur essendone attratti.[1]

Restava aperto tuttavia il problema di spiegare l'azione a distanzatra i corpi celesti, priva di contatto materiale, al quale verrà data una soluzione soltanto ai primi delNovecentoda parte diEinstein,che sostituì l'etere con la tessitura dellospazio-tempo.[11]

La gravitazione in fisica classica

modifica
Lo stesso argomento in dettaglio:Meccanica newtoniana.

Inmeccanica classical'interazione gravitazionale è generata da uncampo vettoriale conservativoe descritta da unaforza,dettaforza peso,che agisce sugli oggetti dotati di massa.

Attrazione gravitazionale tra due corpi
Illustrazione dell'effetto fiondagravitazionale: l'oggetto più piccolo esce dall'incontro con una velocità superiore a quella che aveva inizialmente, a spese dell'oggetto più grande.

La legge di gravitazione universale

modifica
Lo stesso argomento in dettaglio:Legge di gravitazione universale.

La legge di gravitazione universale afferma che due punti materiali si attraggono con una forza di intensitàdirettamente proporzionaleal prodotto delle masse dei singoli corpi einversamente proporzionaleal quadrato della loro distanza. Questa legge, espressa vettorialmente, diventa:

doveè la forza con cui l'oggetto 1 è attratto dall'oggetto 2,è lacostante di gravitazione universale,che vale circa,esono le masse dei due corpi, è ilvettorecongiungente i due corpi (supposti puntiformi) eè il suo modulo; nella seconda espressione della forza (che evidenzia il fatto che il modulo della forza è inversamente proporzionale al quadrato della distanza)rappresenta ilversoreche individua la retta congiungente i due punti materiali.

Definito il vettoreaccelerazione di gravità:

la legge di gravitazione universale può essere espressa come:

In prossimità della superficie terrestre il valore diè convenzionalmente:

anche espressa innewtonsuchilogrammo.

Il campo gravitazionale

modifica
Lo stesso argomento in dettaglio:Campo gravitazionale.

Il campo gravitazionale è uncampo di forzeconservativo.Il campo generato nel puntonello spazio dalla presenza di unamassanel puntoè definito come:

doveè lacostante di gravitazione universaleela massa. È quindi possibile esprimere la forza esercitata sul corpo di massacome:

L'unità di misura del campo gravitazionale nelSistema internazionaleè:

L'accelerazione di gravità in una stanza: la curvatura terrestre è trascurabile e quindi il vettoreè costante e diretto verso il basso.

Il campo gravitazionale è descritto dalpotenziale gravitazionale,definito come il valore dell'energia gravitazionalerilevato da una massa posta in un punto dello spazio per unità di massa. L'energia gravitazionale della massa è il livello di energia che la massa possiede a causa della sua posizione all'interno del campo gravitazionale; pertanto il potenziale gravitazionale della massa è il rapporto tra l'energia gravitazionale e il valore della massa stessa, cioè:

Essendo il campo gravitazionale conservativo, è sempre possibile definire unafunzione scalareil cuigradiente,cambiato di segno, coincida con il campo:

Campo gravitazionale in vicinanza della superficie terrestre

modifica

Nel precedente paragrafo si è detto che il valore medio dell'accelerazione di gravità nei pressi della superficie terrestre è stimato in.In realtà questo valore è diverso da quello reale perché non tiene conto di fattori, come laforza centrifugacausata dalla rotazione terrestre e la non perfetta sfericità della terra (la terra ha la forma di ungeoide). Il valore convenzionalmente assunto è quindi,deciso nella terzaCGPMnel1901e corrisponde all'accelerazione subita da un corpo alla latitudine di.

Per molte applicazioni fisiche e ingegneristiche è quindi utile utilizzare una versione approssimata della forza di gravità, valida nei pressi della superficie terrestre:

doveè unversorediretto lungo laverticale.[12]In sostanza la forza di gravità è approssimata con una forza di modulo costante, indipendente dalla quota del corpo, e come direzione ilbasso,nel senso comune del termine. Naturalmente anche in questa approssimazione corpi con masse diverse hanno la stessa accelerazione di gravità.

L'energia potenziale gravitazionaleè data da:

doveè la quota del corpo rispetto a un riferimento fisso.

Una palla inizialmente ferma in caduta. La sua quota varia con il quadrato del tempo.

In questo caso approssimato è molto semplice ricavare le leggi del moto, medianteintegrazionisuccessive: per un corpo in caduta libera, chiamandozl'asse verticale (sempre diretto verso il basso) e proiettando il moto su di esso, valgono le seguenti leggi:

Inoltre, dalla conservazione dell'energia meccanicasi ottiene un risultato notevole per corpi in caduta libera inizialmente fermi. Scriviamo l'energia meccanica del sistema a un tempo generico:

doveè lavelocitàdel corpo ela sua quota. Supponiamo ora che all'istante inizialeil corpo si trovi a una quotae all'istante finaleabbia una velocitàe si trovi a quota;scriviamo quindi l'energia del sistema ai due istanti:

Dato che l'energia meccanica si conserva possiamo uguagliare le due ultime equazioni e ricavarci ilmodulodella velocità dopo una caduta di una quota:

Il problema generale della gravitazione

modifica

Il problema generale della gravitazione, cioè la determinazione del campo gravitazionale creato da un insieme di masse, si può esprimere con ilteorema di Gausse ilteorema della divergenza. Essendo la forza di gravità conservativa, si può esprimerecome:

doveè proporzionale all'energia potenziale gravitazionale come segue:

Dal teorema di Gauss:

Per il teorema della divergenza, il primo integrale, cioè ilflussodella forza gravitazionale, è esprimibile come integrale di volume della sua divergenza:

Sostituendo ala sua espressione come gradiente:

che, dovendo valere per ogni volume di integrazione, implica:

.

Quest'ultima è unaequazione differenziale alle derivate parzialidel secondo ordine, dettaequazione di Poisson,da completare con le opportune condizioni al contorno.

La gravitazione nella teoria della relatività generale

modifica
Lo stesso argomento in dettaglio:Relatività generale.

La teoria diNewtondella gravitazione ha permesso di descrivere con accuratezza la grande maggioranza dei fenomeni gravitazionali nel Sistema Solare. Tuttavia, da un punto di vista sperimentale essa presenta alcuni punti deboli, successivamente affrontati a partire dalla teoria dellarelatività generale:

  1. La teoria di Newton presuppone che la forza gravitazionale sia trasmessa istantaneamente con un meccanismo fisico non ben definito e indicato con il termine "azione a distanza".Lo stesso Newton tuttavia riteneva taleazione a distanzauna spiegazione insoddisfacente del modo in cui la gravità agisse.
  2. Il modello di Newton di spazio e di tempo assoluti è stato contraddetto dalla teoria di Einstein dellarelatività ristretta.Tale teoria prevede che la simultaneità temporale di due eventi sia una proprietà relativa al singolo osservatore, e non una proprietà assoluta indipendente dall'osservatore. Pertanto, nessuna interazione fisica può dipendere dalle posizioni di due corpi in uno stesso istante, dato che per un diverso osservatore le stesse posizioni nello spazio saranno assunte dai due corpi in istanti diversi. In relazione a questo, si dimostra che un'interazione fisica deve trasmettersi attraverso un campo (che risulta quindi un ente fisico a tutti gli effetti, come nell'elettromagnetismo, e non una mera costruzione matematica come è il "campo gravitazionale" nella teoria newtoniana); le variazioni del campo, infine, possono propagarsi solo a velocità finita, non superiore alla velocità della radiazione elettromagnetica nel vuoto.
  3. La teoria di Newton non prevede correttamente la precessione delperieliodell'orbitadel pianetaMercurio,dando un risultato in disaccordo con le osservazioni di alcune decine disecondi d'arcoal secolo.
  4. La teoria di Newton predice che la luce sia deviata dalla gravità, ma questa deviazione è metà di quanto osservato sperimentalmente.[13]
  5. Il concetto per cuimasse gravitazionali e inerzialisono la stessa cosa (o almeno proporzionali) per tutti i corpi non è spiegato all'interno del sistema di Newton.

Einstein sviluppò una nuova teoria della gravitazione, denominatarelatività generale,pubblicata nel1915.

Nella teoria di Einstein, la gravità non è una forza, come tutte le altre, ma è la proprietà della materia di deformare lo spazio-tempo. Propriamente, la gravità non è un'interazione a distanza fra due masse, ma è unfenomeno mediatoda una deformazione dello spazio-tempo. La presenza di massa (più in generale, di energia e impulso) determina una curvatura della geometria (più esattamente, della struttura metrica) dello spazio-tempo: poiché i corpi che si muovono in "caduta libera" seguono nello spazio-tempo traiettoriegeodetiche,e queste ultime non sono rettilinee se lo spazio-tempo è curvo, ecco che il moto degli altri corpi (indipendentemente dalla loro massa) subisce le accelerazioni che classicamente sono attribuite alla "forza di gravità".

I pianeti del Sistema Solare quindi hanno orbite ellittiche non per effetto di una forza di attrazione esercitata direttamente dal Sole, ma perché la massa del Sole incurva lo spazio-tempo. Il campo gravitazionale attorno a una stella è rappresentato dalla soluzione di Schwarzschild delle equazioni di Einstein, soluzione che si ottiene semplicemente assumendo le proprietà di simmetria sferica nello spazio tridimensionale di indipendenza dal tempo. Le equazioni del moto geodetico nellametricadiSchwarzschildpermettono di calcolare l'orbita di un pianeta attorno a una stella: per quasi tutti i pianeti del Sistema Solare, la differenza fra queste orbite e i moti descritti dalle leggi di Keplero (soluzioni delle equazioni di Newton) non è osservabile in quanto è molto più piccola degli effetti perturbativi dovuti all'interazione dei pianeti fra loro. L'unica eccezione è rappresentata dal moto di Mercurio, in cui la precessione dell'asse dell'orbita che si osserva è molto maggiore di quanto previsto dalla gravità newtoniana (anche tenendo conto dell'influenza degli altri pianeti), ed è invece in perfetto accordo con la previsione delle equazioni relativistiche. L'osservazione della precessione del perielio di Mercurio è quindi una delle evidenze a favore della relatività generale rispetto alla teoria gravitazionale newtoniana.

Un'ulteriore evidenza osservativa, riscontrata per la prima volta nel corso dell'eclissi solare del 1919, ma definitivamente confermata da osservazioni su scala extragalattica a partire dal 1980) consiste nell'effetto dettolente gravitazionale:l'immagine di un corpo celeste visto dalla Terra appare spostata rispetto alla posizione reale del corpo, talvolta anche sdoppiata, a causa della deflessione che la luce subisce quando rasenta una regione dello spazio con alta densità di massa. Questo conferma il fatto che la gravitazione deforma lo spazio-tempo, e che tale deformazione è avvertita anche da particelle prive di massa, ifotoni.

Teorie alternative

modifica

Sono state sviluppate alcune teorie (ancora non provate sperimentalmente) che hanno lo scopo di descrivere l'interazione gravitazionale nell'ambito della meccanica quantistica. Alcune di queste sono lagravità quantistica a loope lateoria delle stringhe.

Il fisico matematicoErik Verlindepropone, rivedendo idee già in circolazione, che la gravità sia interpretabile come la manifestazione di una forza emergente in sensoentropico:citando le sue parole la gravità altro non è che un«effetto collaterale della propensione naturale verso il disordine.»

Derivazione delle leggi della gravitazione dalla meccanica statistica applicata al principio olografico

modifica

Nel 2009,Erik Verlindeformalizzò un modello concettuale che descrive la gravità come una forza entropica[14],che suggerisce che la gravità è una conseguenza del comportamento statistico dell'informazione associata alla posizione dei corpi materiali. Questo modello combina l'approccio termodinamico della gravità con ilprincipio olografico,e implica che la gravità non sia una interazione fondamentale, ma un fenomeno che emerge dal comportamento statistico dei gradi di libertà microscopici codificati su uno schermo olografico.

La legge di gravità può essere derivata dalla meccanica statistica classica applicata al principio olografico, che afferma che la descrizione di un volume di spazio può essere rappresentato comebit d'informazione binaria, codificata ai confini della regione, una superficie di area. L'informazione è distribuita casualmente su tale superficie e ciascun bit immagazzinato in una superficie elementare dell'area.

doveè lalunghezza di Planck.

Il teorema statistico di equipartizione lega la temperaturadi un sistema (espressa injoule,basandosi sullacostante di Boltzmann) con la sua energia media:

Questa energia può essere identificata con la massaper la relazione di equivalenza di massa ed energia:

.

La temperatura effettiva sperimentata da un rivelatore uniformemente accelerato in un campo di vuoto o stato di vuoto è data dall'effetto Unruh.

Questa temperatura è:

doveè lacostante di Planckridotta eè l'accelerazione locale, che è legata alla forzadallaseconda legge di Newtondel moto:

.

Assumendo ora che lo schermo olografico sia una sfera di raggio,la sua superficie è data da:

,

Da questi principi si deriva lalegge di gravitazione universaledi Newton:

.

L'iter è reversibile: leggendolo dal basso, dalla legge di gravitazione, risalendo per i principi della termodinamica si ricava l'equazione che descrive il principio olografico.

  1. ^abcdefgGiacomo De Angelis,Il concetto di forza,inL'universo testuale della scienza,pp. 41-46, "Atti dello Alexander von Humboldt", Kolleg, Pisa 23-25, Ottobre 2009.
  2. ^Giovanni Virginio Schiaparelli,Le sfere omocentriche di Eudosso, di Callippo e di Aristotele,Hoepli, 1875.
  3. ^«Ai tempi del filosofo greco non era minimamente possibile percepire un sasso che cade come qualcosa di completamente esterno all'uomo. L'esperienza era a quei tempi tale per cui l'uomo sentiva interiormente come doveva lui stesso sforzarsi e spronarsi per muoversi alla stessa velocità del sasso che cadeva — in opposizione all'attrazione passiva esercitata dalla gravità dal di fuori» (Pietro Archiati,Dalla mia vita,pag. 28, Verlag, 2002).
  4. ^Alberto Di Giovanni,La Filosofia dell'amore nelle opere di Dante,pag. 385, Abete, 1967.
  5. ^Anna De Pace,Niccolò Copernico e la fondazione del cosmo eliocentrico,pag. 63, Mondadori, 2009.
  6. ^Andrea Albini,L'autunno dell'astrologia,pag. 36, Odradek, 2010.
  7. ^Gravità: l'esperimento mentale di Galileo,suFocus.it.URL consultato il 30 dicembre 2021.
  8. ^Ernst Cassirer,Storia della filosofia moderna,vol. II, p. 194, Torino 1968.
  9. ^La seconda legge di Newton,trad. it. di Giuliano Pinto, 2005.
  10. ^Qui Popper si riferisce alla scoperta dell'influsso lunare sullemaree.
  11. ^Angelo Baracca, Mira Fischetti, Riccardo Rigatti,Fisica e realtà: forze, campi, movimento,vol. 2, pag. 152, Cappelli, 1999. Respingendo le concezioni meccanicistiche e grossolane dell'etere elettromagnetico formulate nell'Ottocento, Einstein rilevò che «con la parola etere non si intende nient'altro che la necessità di rappresentare lo spazio come portatore di proprietà fisiche», quelle proprie cioè della struttura quadrimensionale dello spaziotempo.
  12. ^Un vettore è, per definizione, verticale quando è diretto come l'accelerazione di gravità.
  13. ^Via Lattea Divulgazione scientifica,Effetto della gravità sui fotoni
  14. ^(NL) Martijn van Calmthout,Is Einstein een beetje achterhaald?,inde Volkskrant,12 dicembre 2009.URL consultato il 6 settembre 2010.

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica
Controllo di autoritàThesaurus BNCF7993·LCCN(EN)sh85056558·GND(DE)4021908-2·BNE(ES)XX53092(data)·BNF(FR)cb11941885b(data)·J9U(EN,HE)987007538558205171·NDL(EN,JA)00575134