Abstract
We further elaborate on the general construction proposed in [1], which connects, via tree-level double copy, massless string amplitudes with color-ordered QFT amplitudes that are given by Cachazo-He-Yuan formulas. The current paper serves as a detailed study of the integration-by-parts procedure for any tree-level massless string correlator outlined in the previous letter. We present two new results in the context of heterotic and (compactified) bosonic string theories. First, we find a new recursive expansion of any multitrace mixed correlator in these theories into a logarithmic part corresponding to the CHY integrand for Yang-Mills-scalar amplitudes, plus correlators with the total number of traces and gluons decreased. By iterating the expansion, we systematically reduce string correlators with any number of subcycles to linear combinations of Parke-Taylor factors and similarly for the case with gluons. Based on this, we then derive a CHY formula for the corresponding (DF)2+ YM +ϕ3amplitudes. It is the first closed-form result for such multitrace amplitudes and thus greatly extends our result for the single-trace case. As a byproduct, it gives a new CHY formula for all Yang-Mills-scalar amplitudes. We also study consistency checks of the formula such as factorizations on massless poles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. He, F. Teng and Y. Zhang,String amplitudes from field-theory amplitudes and vice versa,Phys. Rev. Lett.122(2019) 211603 [arXiv:1812.03369] [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka,Grassmannian Geometry of Scattering Amplitudes,Cambridge University Press, Cambridge U.K. (2016).
J.M. Henn and J.C. Plefka,Scattering Amplitudes in Gauge Theories,Lect. Notes Phys.883(2014) 1.
H. Elvang and Y.-t. Huang,Scattering Amplitudes in Gauge Theory and Gravity,Cambridge University Press, Cambridge U.K. (2015).
H. Kawai, D.C. Lewellen and S.H.H. Tye,A Relation Between Tree Amplitudes of Closed and Open Strings,Nucl. Phys.B 269(1986) 1 [INSPIRE].
Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky,Multileg one loop gravity amplitudes from gauge theory,Nucl. Phys.B 546(1999) 423 [hep-th/9811140] [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson,New Relations for Gauge-Theory Amplitudes,Phys. Rev.D 78(2008) 085011 [arXiv:0805.3993] [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson,Perturbative Quantum Gravity as a Double Copy of Gauge Theory,Phys. Rev. Lett.105(2010) 061602 [arXiv:1004.0476] [INSPIRE].
Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov,Ultraviolet Properties of N= 4Supergravity at Four Loops,Phys. Rev. Lett.111(2013) 231302 [arXiv:1309.2498] [INSPIRE].
Z. Bern, S. Davies and T. Dennen,Enhanced ultraviolet cancellations in \( \mathcal{N} \)= 5supergravity at four loops,Phys. Rev.D 90(2014) 105011 [arXiv:1409.3089] [INSPIRE].
H. Johansson, G. Kälin and G. Mogull,Two-loop supersymmetric QCD and half-maximal supergravity amplitudes,JHEP09(2017) 019 [arXiv:1706.09381] [INSPIRE].
Z. Bern, J.J. Carrasco, W.-M. Chen, A. Edison, H. Johansson, J. Parra-Martinez et al.,Ultraviolet Properties of \( \mathcal{N} \)= 8Supergravity at Five Loops,Phys. Rev.D 98(2018) 086021 [arXiv:1804.09311] [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan,Scattering of Massless Particles in Arbitrary Dimensions,Phys. Rev. Lett.113(2014) 171601 [arXiv:1307.2199] [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan,Scattering of Massless Particles: Scalars, Gluons and Gravitons,JHEP07(2014) 033 [arXiv:1309.0885] [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan,Scattering equations and Kawai-Lewellen-Tye orthogonality,Phys. Rev.D 90(2014) 065001 [arXiv:1306.6575] [INSPIRE].
T. Adamo, E. Casali and D. Skinner,Ambitwistor strings and the scattering equations at one loop,JHEP04(2014) 104 [arXiv:1312.3828] [INSPIRE].
Y. Geyer, L. Mason, R. Monteiro and P. Tourkine,Loop Integrands for Scattering Amplitudes from the Riemann Sphere,Phys. Rev. Lett.115(2015) 121603 [arXiv:1507.00321] [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan,One-Loop Corrections from Higher Dimensional Tree Amplitudes,JHEP08(2016) 008 [arXiv:1512.05001] [INSPIRE].
Y. Geyer, L. Mason, R. Monteiro and P. Tourkine,Two-Loop Scattering Amplitudes from the Riemann Sphere,Phys. Rev.D 94(2016) 125029 [arXiv:1607.08887] [INSPIRE].
Y. Geyer and R. Monteiro,Two-Loop Scattering Amplitudes from Ambitwistor Strings: from Genus Two to the Nodal Riemann Sphere,JHEP11(2018) 008 [arXiv:1805.05344] [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan,Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM,JHEP07(2015) 149 [arXiv:1412.3479] [INSPIRE].
S. He and O. Schlotterer,New Relations for Gauge-Theory and Gravity Amplitudes at Loop Level,Phys. Rev. Lett.118(2017) 161601 [arXiv:1612.00417] [INSPIRE].
S. He, O. Schlotterer and Y. Zhang,New BCJ representations for one-loop amplitudes in gauge theories and gravity,Nucl. Phys.B 930(2018) 328 [arXiv:1706.00640] [INSPIRE].
L. Mason and D. Skinner,Ambitwistor strings and the scattering equations,JHEP07(2014) 048 [arXiv:1311.2564] [INSPIRE].
E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig,New Ambitwistor String Theories,JHEP11(2015) 038 [arXiv:1506.08771] [INSPIRE].
W. Siegel,Amplitudes for left-handed strings,arXiv:1512.02569[INSPIRE].
E. Casali and P. Tourkine,On the null origin of the ambitwistor string,JHEP11(2016) 036 [arXiv:1606.05636] [INSPIRE].
T. Azevedo and R.L. Jusinskas,Connecting the ambitwistor and the sectorized heterotic strings,JHEP10(2017) 216 [arXiv:1707.08840] [INSPIRE].
S. Mizera,Scattering Amplitudes from Intersection Theory,Phys. Rev. Lett.120(2018) 141602 [arXiv:1711.00469] [INSPIRE].
N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Tourkine and P. Vanhove,Scattering Equations and String Theory Amplitudes,Phys. Rev.D 90(2014) 106002 [arXiv:1403.4553] [INSPIRE].
C.R. Mafra, O. Schlotterer and S. Stieberger,Explicit BCJ Numerators from Pure Spinors,JHEP07(2011) 092 [arXiv:1104.5224] [INSPIRE].
C.R. Mafra, O. Schlotterer and S. Stieberger,Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation,Nucl. Phys.B 873(2013) 419 [arXiv:1106.2645] [INSPIRE].
C.R. Mafra, O. Schlotterer and S. Stieberger,Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure,Nucl. Phys.B 873(2013) 461 [arXiv:1106.2646] [INSPIRE].
C.R. Mafra and O. Schlotterer,Towards one-loop SYM amplitudes from the pure spinor BRST cohomology,Fortsch. Phys.63(2015) 105 [arXiv:1410.0668] [INSPIRE].
S. He, R. Monteiro and O. Schlotterer,String-inspired BCJ numerators for one-loop MHV amplitudes,JHEP01(2016) 171 [arXiv:1507.06288] [INSPIRE].
M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban,Scattering amplitudes in \( \mathcal{N} \)= 2Maxwell-Einstein and Yang-Mills/Einstein supergravity,JHEP01(2015) 081 [arXiv:1408.0764] [INSPIRE].
N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove,Minimal Basis for Gauge Theory Amplitudes,Phys. Rev. Lett.103(2009) 161602 [arXiv:0907.1425] [INSPIRE].
S. Stieberger,Open & Closed vs. Pure Open String Disk Amplitudes,arXiv:0907.2211[INSPIRE].
S. Stieberger and T.R. Taylor,New relations for Einstein-Yang-Mills amplitudes,Nucl. Phys.B 913(2016) 151 [arXiv:1606.09616] [INSPIRE].
O. Schlotterer,Amplitude relations in heterotic string theory and Einstein-Yang-Mills,JHEP11(2016) 074 [arXiv:1608.00130] [INSPIRE].
J. Broedel, O. Schlotterer and S. Stieberger,Polylogarithms, Multiple Zeta Values and Superstring Amplitudes,Fortsch. Phys.61(2013) 812 [arXiv:1304.7267] [INSPIRE].
J.J.M. Carrasco, C.R. Mafra and O. Schlotterer,Abelian Z-theory: NLSM amplitudes and α’-corrections from the open string,JHEP06(2017) 093 [arXiv:1608.02569] [INSPIRE].
C.R. Mafra and O. Schlotterer,Non-abelian Z-theory: Berends-Giele recursion for the α ′-expansion of disk integrals,JHEP01(2017) 031 [arXiv:1609.07078] [INSPIRE].
J.J.M. Carrasco, C.R. Mafra and O. Schlotterer,Semi-abelian Z-theory: NLSM+ϕ 3from the open string,JHEP08(2017) 135 [arXiv:1612.06446] [INSPIRE].
Y.-t. Huang, O. Schlotterer and C. Wen,Universality in string interactions,JHEP09(2016) 155 [arXiv:1602.01674] [INSPIRE].
T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer,Heterotic and bosonic string amplitudes via field theory,JHEP10(2018) 012 [arXiv:1803.05452] [INSPIRE].
H. Johansson and J. Nohle,Conformal Gravity from Gauge Theory,arXiv:1707.02965[INSPIRE].
O. Schlotterer and S. Stieberger,Motivic Multiple Zeta Values and Superstring Amplitudes,J. Phys.A 46(2013) 475401 [arXiv:1205.1516] [INSPIRE].
S. Stieberger,Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator,J. Phys.A 47(2014) 155401 [arXiv:1310.3259] [INSPIRE].
S. Stieberger and T.R. Taylor,Closed String Amplitudes as Single-Valued Open String Amplitudes,Nucl. Phys.B 881(2014) 269 [arXiv:1401.1218] [INSPIRE].
O. Schlotterer and O. Schnetz,Closed strings as single-valued open strings: A genus-zero derivation,J. Phys.A 52(2019) 045401 [arXiv:1808.00713] [INSPIRE].
F. Brown and C. Dupont,Single-valued integration and superstring amplitudes in genus zero,arXiv:1810.07682[INSPIRE].
O. Schnetz,Graphical functions and single-valued multiple polylogarithms,Commun. Num. Theor. Phys.08(2014) 589 [arXiv:1302.6445] [INSPIRE].
F. Brown,Single-valued Motivic Periods and Multiple Zeta Values,SIGMA2(2014) e25 [arXiv:1309.5309] [INSPIRE].
N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard,Proof of Gravity and Yang-Mills Amplitude Relations,JHEP09(2010) 067 [arXiv:1007.3111] [INSPIRE].
S. Mizera and G. Zhang,A String Deformation of the Parke-Taylor Factor,Phys. Rev.D 96(2017) 066016 [arXiv:1705.10323] [INSPIRE].
S. Mizera,Combinatorics and Topology of Kawai-Lewellen-Tye Relations,JHEP08(2017) 097 [arXiv:1706.08527] [INSPIRE].
N. Arkani-Hamed, Y. Bai and T. Lam,Positive Geometries and Canonical Forms,JHEP11(2017) 039 [arXiv:1703.04541] [INSPIRE].
N. Arkani-Hamed, Y. Bai, S. He and G. Yan,Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet,JHEP05(2018) 096 [arXiv:1711.09102] [INSPIRE].
F. Teng and B. Feng,Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame,JHEP05(2017) 075 [arXiv:1703.01269] [INSPIRE].
Y.-J. Du, B. Feng and F. Teng,Expansion of All Multitrace Tree Level EYM Amplitudes,JHEP12(2017) 038 [arXiv:1708.04514] [INSPIRE].
C.S. Lam and Y.-P. Yao,Evaluation of the Cachazo-He-Yuan gauge amplitude,Phys. Rev.D 93(2016) 105008 [arXiv:1602.06419] [INSPIRE].
R.P. Stanley,Enumerative Combinatorics: Volume 2,first edition, Cambridge University Press, New York U.S.A. (2001).
V. Del Duca, L.J. Dixon and F. Maltoni,New color decompositions for gauge amplitudes at tree and loop level,Nucl. Phys.B 571(2000) 51 [hep-ph/9910563] [INSPIRE].
H. Johansson, G. Mogull and F. Teng,Unraveling conformal gravity amplitudes,JHEP09(2018) 080 [arXiv:1806.05124] [INSPIRE].
S. He and Y. Zhang,New Formulas for Amplitudes from Higher-Dimensional Operators,JHEP02(2017) 019 [arXiv:1608.08448] [INSPIRE].
L.M. Garozzo, L. Queimada and O. Schlotterer,Berends-Giele currents in Bern-Carrasco-Johansson gauge for F 3- and F 4-deformed Yang-Mills amplitudes,JHEP02(2019) 078 [arXiv:1809.08103] [INSPIRE].
Y.-J. Du and F. Teng,BCJ numerators from reduced Pfaffian,JHEP04(2017) 033 [arXiv:1703.05717] [INSPIRE].
Y.-J. Du and Y. Zhang,Gauge invariance induced relations and the equivalence between distinct approaches to NLSM amplitudes,JHEP07(2018) 177 [arXiv:1803.01701] [INSPIRE].
L. Hou and Y.-J. Du,A graphic approach to gauge invariance induced identity,JHEP05(2019) 012 [arXiv:1811.12653] [INSPIRE].
S. Mizera,Aspects of Scattering Amplitudes and Moduli Space Localization,arXiv:1906.02099[INSPIRE].
P. Vanhove and F. Zerbini,Closed string amplitudes from single-valued correlation functions,arXiv:1812.03018[INSPIRE].
S. He, G. Yan, C. Zhang and Y. Zhang,Scattering Forms, Worldsheet Forms and Amplitudes from Subspaces,JHEP08(2018) 040 [arXiv:1803.11302] [INSPIRE].
N. Arkani-Hamed, talk atAmplitudes 2019,Trinity College, Dublin Ireland (2019),https://indico.cern.ch/event/750565/contributions/3439541/attachments/1873668/3084360/Arkani-Hamed.pdf.
C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily and P.H. Damgaard,String-Like Dual Models for Scalar Theories,JHEP12(2016) 019 [arXiv:1610.04228] [INSPIRE].
A. Tsuchiya,More on One Loop Massless Amplitudes of Superstring Theories,Phys. Rev.D 39(1989) 1626 [INSPIRE].
L. Dolan and P. Goddard,Current Algebra on the Torus,Commun. Math. Phys.285(2009) 219 [arXiv:0710.3743] [INSPIRE].
C.R. Mafra and O. Schlotterer,Double-Copy Structure of One-Loop Open-String Amplitudes,Phys. Rev. Lett.121(2018) 011601 [arXiv:1711.09104] [INSPIRE].
C.R. Mafra and O. Schlotterer,Towards the n-point one-loop superstring amplitude I: Pure spinors and superfield kinematics,arXiv:1812.10969.
C.R. Mafra and O. Schlotterer,Towards the n-point one-loop superstring amplitude. Part II. Worldsheet functions and their duality to kinematics,JHEP08(2019) 091 [arXiv:1812.10970] [INSPIRE].
C.R. Mafra and O. Schlotterer,Towards the n-point one-loop superstring amplitude. Part III. One-loop correlators and their double-copy structure,JHEP08(2019) 092 [arXiv:1812.10971] [INSPIRE].
J.E. Gerken, A. Kleinschmidt and O. Schlotterer,Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings,JHEP01(2019) 052 [arXiv:1811.02548] [INSPIRE].
X. Gao, S. He and Y. Zhang,Labelled tree graphs, Feynman diagrams and disk integrals,JHEP11(2017) 144 [arXiv:1708.08701] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint:1907.06041
Rights and permissions
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visithttps://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
He, S., Teng, F. & Zhang, Y. String correlators: recursive expansion, integration-by-parts and scattering equations. J. High Energ. Phys.2019,85 (2019). https://doi.org/10.1007/JHEP09(2019)085
Received:
Revised:
Accepted:
Published:
DOI:https://doi.org/10.1007/JHEP09(2019)085