Vejatz lo contengut

Estela

Tièra de 1000 articles que totas las Wikipèdias deurián aver.
Un article de Wikipèdia, l'enciclopèdia liura.

Region de formacion estellara dins laGrand Nívol de Magellan.

Unaestela(var.estiala,estrela) es unaboladeplasmaque genèra d'energiagràcias a lafusion nucleara.Leis estelas (manca loSoleu) apareisson coma de ponchs luminós dins lo cèu de nuech, e beluguejan per encausa de l'atmosfèraterrèstra.

Formacion e evolucion[modificar|Modificar lo còdi]

Nívol molecular de laNebulosa d'Orion(M42) vist per lotelescòpi espacial Hubble.

Leis estelas son formadas dins lei regions qu'an una densitat de matèria pus auta qu'aquela dau mitan interestellar. Aquela matèria es principalament facha d'idrogène d'èli.Tènon egalament un percentatge d'elements quimics pus pesants. Dins aquò, la pression d'aquelei zonas, dichasnívols moleculars,es inferiora ai vueges obtenguts dins lei laboratòris terrèstres. Un exemple fòrça celèbre d'una region d'aqueu tipe es laNebulosa d'Orion(M42)[1].D'efècte, quand leis estèlas en formacion s'illuminan, esclairan de regions dei nívols moleculars autorizant lor observacion dempuei laTèrra.

Formacion dei protoestelas[modificar|Modificar lo còdi]

Globuls de Bokdins la region IC 2944 vist per lotelescòpi espacial Hubble.

La formacion d'una estela acomença amb una instabilitat gravitacionala dins un nívol molecular, generalament causada per leis ondas de tuert d'unasupernovao per la collision entre doasgalaxias.La durada de l'afondrament gravitacionau d'un nívol molecular es estimada entre 10 e 15 milions d'annadas. Durant l'afondrament dau nívol, de conglomerats pus dens e fachs de gas e de poussa se forman dins lo nívol. Aquelei conglomerats son dichsglobuls de Bok.Pendent l'afondrament d'aquelei globuls, la temperatura e la pression aumentan. Puei, quand l'equilibri idrostatic es agantat, una protoestèla se forma au còr dau globul[2].Aquelei protoestèlas son sovent enviroutadas per un disc protoplanetari.

Leis astres novèus amb una massa inferiora a doas massas solaras forman la classa deis estèlas variablas dau tipeT Tauri.Lei reaccions de fusion de l'idrogèn son pas encara començadas e l'energia provèn solament de la contraccion gravitacionala. De mai, leis estèlas d'aqueu tipe tènon un disc d'acrecion e una velocitat de rotacion importanta. Enfin, de giscles de matèria an generalament luòc de lòng de l'axe de rotacion de l'estela. Aquelei giscles son nomatsobjèctes Herbig-Haro[3][4].Ansin, lei rèstas dau nívol son finalament dispersats en causa dei giscles e dei radiacions deis estèlas novèlas[5].

Sequéncia principala[modificar|Modificar lo còdi]

Evolucion dau Sistèma Solar e dau Soleu qu'es un exemple d'estèlas de lasequéncia principala.
Article detalhat:Sequéncia principala.

Lasequéncia principalaes una fasa que representa 90% de l'existéncia deis estelas. Pendent aqueu periòde, l'estela produtz d'èlia partir d'idrogènper de reaccions de fusion nuclearas. Aqueleis estèlas son dichasestèlas nanetas.Lor concentracion d'èliaumenta donc progressivament. En consequéncia, per mantenir lei reaccions de fusion dins lo nuclèu, la temperatura e la luminositat aumentan tanben pauc a pauc[6].Per exemple, la luminositat dauSoleuauriá aumentat d'environ 40% dempuei 4,6 miliards d'annadas[7].

Cada estela de la sequéncia principala emet un vent estellar fach de particulas que constituisson un flux gasós continú vèrs l'Espaci.Per la màger part deis estèlas, la pèrda de massa causada per lo vent estellar es negligibla. Per exemple, loSoleupèrd 10-14de sa massa cada an en causa dau vent solar, siá 0,01% de sa massa durant son existéncia complèta[8].Dins aquò, una estèla supermassissa pòu pèrdre entre 10-7e 10-5de sa massa cada an, modificant fortament son evolucion[9].Ansin, una estela de 50 massas solaras pòu pèrdre la mitat de sa massa iniciala pendent son passatge sus la sequéncia principala[10].

La durada passada dins la sequéncia principala varia principalament en foncion de la quantitat iniciala d'idrogène de la velocitat de reaccions de fusion dau nuclèu. Valent a dire que lei dos paramètres importants son la massa e la luminositat inicialas. Per loSoleu,aqueu periòde es estimat a 1010annadas. Leis estèlas massissas comborisson fòrça rapidament sei re sắc rvas de carburant e an donc una existéncia corta. En revenge, leis estelas pus pichonas, dichasnanetas rojas,comborisson lentament sei re sắc rvas d'idrogène pòdon foncionar durant de desenaus o de centenaus de miliards d'annadas[11].

Enfin, après la massa, un autre paramètre important es la quantitat d'elements pus pesants que l'èli.D'efècte, per leis astronòms, leis elements quimics pus pesants que l'èlison dichsmetause sa concentracion es dichametallicitat.Aquela metallicitat influéncia la durada dei reaccions de fusion, contraròtla la formacion dau camp magnetic de l'estela e modifica l'intensitat dau vent estellar[12][13].

Evolucion après la sequéncia principala[modificar|Modificar lo còdi]

Fichièr:Betelgeuse star (Hubble).jpg
Betelgeusees una estela supergiganta roja dins la constellacion d'Orion.

Quand leis estelas amb una massa superiora a 0,4 massa solara agotan lei re sắc rvas d'idrogèndau nuclèu, sei jaç exteriors se dilatan per formar una estela giganta roja. Per exemple, lo rai dauSoleuserà d'environ 150 milions de quilomètres dins cinc miliards d'annadas còntra 70 000 a l'ora d'ara. Enterin, auriá perdut 30% de sa massa actuala en causa dei reaccions de fusion[7][14][15].

Aquela dilatacion es entraïnada per dos fenomèns que son l'extension dei reaccions de fusion de l'idrogèndins lei jaç exteriors de l'estela e la contraccion dau nuclèu ont acomençan lei reaccions de fusion de l'èli[16].Dins aquò, aquelei fenomèns son pas necessariament simultanèus. D'efècte, per leis estelas gigantas rojas amb una massa inferiora a 2,25 massas solaras, aquela transicion comença per l'aumentacion dau rai en causa de la fusion de l'idrogèn dins lei jaç exteriors. Puei, aquela dilatacion aumenta la pression dins lo nuclèu, permetent adonc lo començament dei reaccions implicant l'èli[16].En revenge, una massa superiora a 2,25 massas solaras es sufisenta per entraïnar la fusion de l'èli[16].La fusion de l'èlicausa generalament una aumentacion brusca de la luminositat e de la temperatura de superficia. Enfin, après la consumacion dei re sắc rvas d'èlidau nuclèu, lei reaccions de fusion s'estendon ai jaç superiors.

Durant la fasa de fusion de l'èli,leis estelas d'una massa superiora a nòu massas solaras pòdon formar d'estèlas supergigantas. Après l'agotament dei re sắc rvas d'èli,aqueleis estèlas pòdon entraïnar la fusion d'elements pus pesants que l'èli.D'efècte, lo nuclèu se contracta e la fusion daucarbònipòu començar. Puei, lei reaccions de fusion se propagan auneon,a l'oxigène ausiliciper pervenir a la produccion defèrrequ'es lo darrier element produch. Ansin, certaneis estèlas ancianas aurián un nuclèu defèrremai leis elements pesants pòdon egalament agantar la superficia. Lo vent solar es adonc relativament dens.

Fin deis estelas[modificar|Modificar lo còdi]

Rèstas desupernovade laNebulosa dau Cranc (M1).

Leis estelas ancianas dau tipe solar finisson per embandir au luench sei jaç exteriors e formar unanebulosa planetària.Se lei rèstas de l'estela an una massa mens importanta que 1,4 massas solaras, se pòdon contractar per formar un objècte amb una talha similara a laTèrradichnaneta blanca[17].Puei, après un periòde probablament fòrça lòng de refrejament, lei nanetas blancas vendrián de nanetas negras.

Per leis estelas pus massissas, lei reaccions de fusion contunian fins que la massa dau nuclèu defèrrevèngue tròp importanta (environ 1,4 massas solaras). Lo nuclèu s'afondra adonc rapidament en causa de sa gravitat, causant una onda de tuert. Aquela onda entraïna l'explosion dei rèstas de l'estèla. Una explosion, dichasupernova,pòu èsser brevament tant lusenta coma unagalaxia.Ansin, leisupernovasde laVia Lactèafoguèron descrichas coma d'estèlas novèlas per leis astronòms ancians[18].La màger part de l'estela es ejectada au luench per l'explosion creant un tipe particular de nebulosa dichrèstas de supernova.Un exemple fòrça conegut es laNebulosa dau Cranc (M1)[18].De son caire, lo nuclèu vèn unpulsaro per leis estèlas pus massissas, untrauc negre[19].

Lei jaç exteriors deis estelas expulsats dins l'Univèrstènon un ròtle important car se pòdon reciclar dins la formacion d'estèlas novèlas e de planetas. Ansin, la bofada deisupernovase lo vent estellar an una importància capitala dins la formacion dau mitan interestellar[18].

Caracteristicas[modificar|Modificar lo còdi]

Massa[modificar|Modificar lo còdi]

La massa es la caracteristica fisica pus importanta d'una estela car permet la determinacion de sei paramètres d'evolucion essenciaus. Pòu montar a 100 o 150 massas solaras coma perEta Carinaeo benlèu 265 massas solaras perRMC 136a[20].Dins aquò, la massa d'una estèla pòu tanben èsser fòrça febla coma perAB Doradus Camb una massa egala a 93 còps la massa deJupitèr[21].Lo limit inferior per la massa deis estèlas seriá situat entre 75 e 87 massasjovianase variariá en foncion dau taus de metaus[22][23].Lei còrs pus pichons son denanetas brunas.Lo limit superior es mau conegut. Fins a la descubèrta deRMC 136a,leis astrònoms supausavan l'existéncia d'un maximum entre 100 e 150 massas solaras.

Temps[modificar|Modificar lo còdi]

Lo temps deis estelas conegudas a l'ora d'ora varia generalament entre un miliard e dètz miliards d'annadas. L'estela pus anciana coneguda esHE 1523-0901amb un temps egau a 13,2 miliards d'annadas[24][25].La durada d'existéncia d'una estèla depend quasi unicament de sa massa. Es corta, quauquei milions d'annadas, per leis estelas pus massissas que comborisson rapidament sei re sắc rvas de carburant. En revenge, leis estelas pus pichonas pòdon existir durant de desenaus o de centenaus de miliards d'annadas[26].

Composicion quimica[modificar|Modificar lo còdi]

La composicion massica mejana deis estèlas de laVia Lactèaes environ 71% d'idrogène 27% d'èliamb un percentatge feble d'elements pus pesants[27].Generalament, la porcion d'elements pesants es recampada au taus defèrredins l'atmosfèra estellara car son espèctre d'absorcion se mesura facilament. Ansin, la quantitat defèrredins una estèla pòu permetre l'identificacion d'un sistèma de planetas l'enviroutant[28].

L'estela amb lo taus pus feble defèrrees l'estèla nanetaHE1327-2326que tèn 5.10-6de la concentracion solara. En revenge, existisson d'estèlas, coma μ Leonis o14 Herculis,amb dos o tres còps lo taus defèrredauSoleu[29].Enfin, certaneis estèlas an un espèctre enriquit amb un element especial[30].

Diamètre[modificar|Modificar lo còdi]

Lo diamètre reau d'una estela varia de 20-40 quilomètres per un pulsar a environ 900 milions de quilomètres per una estèla supergiganta comaBetelgeuse.Dins aquò, en causa dei distàncias fòrça importantas ambé laTèrra,leis estèlas son vistas coma de ponchs pichons que beluguejan dau fach deis efèctes atmosferics. Ansin, a l'excepcion dauSoleu,l'estèla ambé la talha aparenta pus granda esR Doradus,amb un diamètre visible egau a 0,057 segondas d'arc.

Lei discs visibles deis estèlas son donc tròp pichons per d'observacions ambé de telescòpis optics. Aquelei mesuras necessitan generalament l'utilizacion dei telescòpis interferomètres per obtenir d'imatges o l'estudi per ocultacion. Per exemple, se la luminositat d'una estèla es coneguda precisament pendent son ocultacion per laLuna,lo diamètre vesedor pòu èsser estimat[31].

Velocitats e movements deis estelas[modificar|Modificar lo còdi]

Leis estèlas d'un amàs, coma lei Plèiades, an generalament un movement pròpri similar.

Lo movement d'una estela a respècte dauSoleupòu permetre d'obtenir d'informacions quant a son origina, son temps, son estructura e son evolucion dins laVia Lactèa.Aqueu movement es devesit en doas compausantas que son la velocitat radiala, se l'estèla s'aluencha o non dauSoleu,e sa velocitat angulara, transversala, dichamovement pròpri.La velocitat radiala es mesurada per efècte Doppler a partir dei espèctres de linhas deis estèlas. Lo movement pròpri es mesurat per d'observacions astronomicas precisas per obtenir saparallaxi.Generalament, leis estèlas pròchas dauSoleuan un movement pròpri important. Puei, aquelei compausantas permeton de calcular la velocitat de l'estèla a respècte dau Soleu o de laVia Lactèa.Leis estèlas de populacion II, pus ancianas, an generalament una velocitat superiora ais estèlas pus jovas de populacion I. De mai, de comparasons entre lei movements d'estelas diferentas permeton l'identificacion d'associacions mostrant una origina comuna probabla[32].

Camp magnetic[modificar|Modificar lo còdi]

Camp magnetic de l'estelaSU Aurigae.

Lo camp magnetic deis estèlas es entraïnat en causa de l'efècte dinamo creat per de movements de conveccion. L'intensitat dau camp magnetic varia en foncion de la massa, de la composicion e de la rotacion a l'entorn de l'axe de l'estela. Son activitat entraïna la formacion dei tacas sornas de la superficia que son de regions amb un camp magnetic fòrça important. De mai, l'activitat magnetica influéncia lei movements dau plasma dins l'atmosfèra estellara e lei projeccions de matèria[33].

D'autra part, leis estelas jovas an generalament una superficia pus activa e una rotacion pus auta en causa de lor camp magnetic. Aqueu camp a donc un ròtle de fren per alentir la rotacion de l'estèla a l'entorn de son axe. Ansin, leis estelas pus ancianas, coma loSoleu,an una velocitat de rotacion pus febla e una activitat de superficia relativament bassa. Dins aquò, l'activitat deis estèlas es egalament ciclica ambé de maximums e de minimums[34].

Velocitat de rotacion[modificar|Modificar lo còdi]

La velocitat de rotacion d'una estèla se pòu mesurar aproximativament per espectroscòpia o pus exactament per observacion dau movement dei tacas sornas de la superficia. Leis estelas jovas an una velocitat de rotacion auta ambé de valors eqüatorialas superioras a 100 km/s. Ansin, per exemple, Achernar tèn una velocitat de rotacion de225 km/squ'entraïna un aplatiment important de l'estèla. Per contrast, la velocitat de rotacion dau Soleu es1,994 km/sa l'eqüator. Ansin, la velocitat de rotacion, que depend de l'intensitat dau camp magnetic, es signe de l'evolucion de l'estèla[35].Enfin, lei rèstas d'estèlas, especialament leipulsars,tènon de velocitats de rotacion fòrça importantas. Per exemple, lopulsarde laNebulosa dau Crancfa trenta torns cada segonda[36].

Temperatura de superfícia[modificar|Modificar lo còdi]

La temperatura de superficia d'una estela de la sequéncia principala es determinat per lo repòrt entre la produccion d'energia dau nuclèu e lo rai estellar[37].Pus generalament, la classificacion actuala deis estèlas es basada sus la color, e donc la temperatura de superficia. Utiliza 7 categorias principalas, de la classa A a la classa Q, e divèrsei classas especialas per destriar leis estelas diferentas. De mai, uei, la classificacion es estenduda ai nanetas brunas. Cada categoria es devesida en dètz grops pus pichons, egalament en foncion de la temperatura de superficia[38]:

  • la classa O amb una temperatura superiora a33 000 Ke una color blava prononciada. Es lo cas deZeta Ophiuchi.
  • la classa B que tèn una temperatura de superficia entre 10 500 e33 000 Kamb una color blava. Un exemple es l'estela Rigel de la constellacion d'Orion.
  • la classa A, coma Altair, amb una color blanca qu'indica una temperatura de superficia entre 7 500 e10 500 K.
  • la classa F que tèn una temperatura entre 6 000 e7 500 Ke una color jauna palla. Per exemple, es lo cas de Procyon A.
  • la classa G qu'es lo tipe dauSoleu.Aqueleis estelas an una color jauna per una temperatura de superficia entre 5 500 e6 000 K.
  • la classa K amb una temperatura de superficia entre 4 000 e5 500 Ke una color aranjada. Un exemple esEpsilon Indi.
  • la classa M, comaProxima Centauri,es la classa deis estelas pus frejas, amb una temperatura entre 2 600 e4 000 K,e una color roja. Aquela classa regropa lei nanetas rojas.

Tipes d'estela[modificar|Modificar lo còdi]

Diagrama de Hertzsprung-Russell[modificar|Modificar lo còdi]

Diagrama Hertzsprung-Russell.

Lo diagrama de Hertzsprung-Russell es un graf mostrant la luminositat deis estèlas en foncion de la temperatura de superficia. Aqueu diagrama mòstra l'existéncia d'una diagonala dau canton aut a senèstra (estèlas brilhantas e caudas) au canton bas a drecha (estèlas gaire lusentas e frejas) onte se situa la majoritat deis estèlas. Aquela diagonala es dichasequéncia principala.La region auta a drecha tèn leis estelas gigantas amb un esclat important e una temperatura de superficia febla. Au dessús, lo canton aut a drecha es poplat per leis estelas supergigantas. Enfin, dins la partida bas a senèstra, i a una diagonala isolada dau rèsta dau diagrama amb lei nanetas blancas que tènon una temperatura de superficia granda amb una magnitud febla.

Naneta bruna[modificar|Modificar lo còdi]

Article detalhat:Naneta bruna.

Lei nanetas brunas son pas d'estelas, o puslèu, son d'estèlas mancadas. Lor massa se situa entre aquela d'una estèla pichona e aquelei dei planetas gròssas. D'efècte, fau environ 0,08 massa solara per entraïnar lei reaccions de fusion dins lo nuclèu d'una protoestela e crear adonc una estèla vertadiera. Òr, lei nanetas brunas an una massa inferiora e pòdon solament emetre un raionament feble per contraccion gravitacionala.

Naneta roja[modificar|Modificar lo còdi]

Article detalhat:Naneta roja.

Lei nanetas rojas son d'estelas rojas e pus pichonas car lei nanetas o lei pulsars an plus de reaccions nuclearas. Lor massa se situa entre 0,08 e 0,8 massa solara e lor temperatura de superficia es entre 2 500 e5 000 K.La color roja es causada per aquelei temperaturas. Lei nanetas rojas mens massissas (amb una massa inferiora a 0,35 massa solara) son entierament convectivas. Aqueleis estelas consuman lentament sei sắc rvas d'idrogène an donc una existéncia lònga. 80% deis estèlas de laVia Lactèason de nanetas rojas que son lo tipe pus frequent d'estèla. Per exemple, l'estèla pus pròcha dauSoleues una naneta roja dichaProxima Centauri.Lo segond sistèma estellar en proximitat es tanben una naneta roja dichaestèla de Barnard.

Naneta jauna[modificar|Modificar lo còdi]

Article detalhat:Naneta jauna.

Lei nanetas jaunas son d'estèlas amb una talha mejana e una temperatura de superficia d'environ 6 000 K. An una superficia amb una color jauna, quasi blanca. Lo periòde d'existéncia d'aqueleis estèlas es estimat a 10 miliards d'annadas. Environ 10% d'estèlas de laVia Lactèason de nanetas jaunas coma loSoleu,Alfa Centauri,Tau Cetie51 Pegasi.

Giganta roja[modificar|Modificar lo còdi]

Article detalhat:Giganta roja.

Lei gigantas rojas son de nanetas jaunas qu'an agotat sei re sắc rvas d'idrogèn.Lei reaccions de fusion de l'èliacomençan adonc e entraïnan un gonflament fòrça important de l'estèla. Ansin, lo nuclèu se contracta e lei jaç exteriors se dilatan, se refrejan e rogisson. Quand lei re sắc rvas de l'èli son consumadas, l'estela s'amòrça. Lei jaç exteriors son expulsats au luench per formar una nebulosa planetària e lo centre se contracta per venir una naneta blanca.

Giganta blava e supergiganta roja[modificar|Modificar lo còdi]

Evolucion deis estèlas supergigantas vèrs la supernòva.
Article detalhat:Giganta blava.
Article detalhat:Supergiganta roja.

Leis estelas pus caudas e amb una massa superiora a 10 massas solaras son dichasgigantas blavas.Consuman rapidament sei re sắc rvas d'idrogèn.Puei, lei reaccions de fusion de l'èlicomençan enterin que l'estela se dilata e sa superficia se refreja per venir roja. Es adonc una supergiganta roja. Lei reaccions de fusion dau nuclèu pòdon produrre d'elements pesants coma lofèrre,loniquèl,locròme,locobalt,lotitani... Pasmens, l'estèla vèn instabla e finís de realizar sei reaccions termonuclearas. Peta adonc ensupernovae forma segon sa massa un pulsar o untrauc negre.

Naneta blanca[modificar|Modificar lo còdi]

Article detalhat:Naneta blanca.

Lei nanetas blancas son lei rèstas d'estelas amb una massa situada entre 0,8 e 5 a 8 massas solaras coma loSoleu[39].Lor talha es pichona, similara a laTèrra[40].Inicialament, son d'astres fòrça cauds amb una color blanca. Puei, se refrejan per raionament. 97% d'estelas de laVia Lactèaformaràn de nanetas blancas dau fach dau nombre limitat d'estèlas fòrça massissas.

La densitat dei nanetas blanca es fòrça auta ambé de valors mejanas egalas a environ 109kg.mm-3[41].Ansin, la matèria compausant lei nanetas blancas es dichadegeneradacar l'expression dei fòrças de pression es adonc basada sus lo principi d'exclusion de Pauli.

Naneta negra[modificar|Modificar lo còdi]

Article detalhat:Naneta negra.

Lei nanetas negras son d'objèctes ipotetics. Serián de nanetas blancas pron refrejadas per emetre mai de lutz[42].Dins aquò, a l'ora d'ara, l'Univèrses tròp jove per tenir de nanetas negras.

Pulsar e trauc negre[modificar|Modificar lo còdi]

Article detalhat:Pulsar.
Article detalhat:Trauc negre.

Lei pulsars son d'astres fòrça pichons mai massís. Per exemple, un pulsar fa 1,5 massas solaras amb un diamètre d'environ 10 quilomètres. Son lei vestigis d'estelas fòrça massissas, superioras a 10 massas solaras, que son nuclèu s'es contractat après una supernova. La densitat d'un pulsar es fòrça auta. De mai, aqueleis objèctes an un camp magnetic e una velocitat de rotacion fòrça importants. Dins aquò, certaneis estèlas an una massa talament auta que la contraccion dau nuclèu entraïnèt la formacion d'un objècte pus massís qu'un pulsar dichtrauc negre.

Catalòg d'estelas[modificar|Modificar lo còdi]

Divèrsei catalògs d'estelas foguèron creats per listar leis estèlas. Lei pus celèbres son lei catalògs HD (Henry Draper) e BD (Bonner Durchmusterung). Leis estelas son classadas ambé sei coordenadas e recebon un numèro de classament coma, per exemple,HD 122653coneguda per son percentatge fòrça feble d'elements metallics.

Referéncias[modificar|Modificar lo còdi]

  1. Woodward, P. R. (1978)."Theoretical models of star formation".Annual review of astronomy and astrophysics16: 555–584. doi:10.1146/annurev.aa.16.090178.003011
  2. Courtney Seligman,Slow Contraction of Protostellar Cloud,[1]
  3. Bally, J.; Morse, J.; Reipurth, B. (1996). "The Birth of Stars: Herbig-Haro Jets, Accretion and Proto-Planetary Disks". In Piero Benvenuti, F.D. Macchetto, and Ethan J. Schreier. Science with the Hubble Space Telescope - II. Proceedings of a workshop held in Paris, France, December 4–8, 1995. Space Telescope Science Institute. p. 491.http://adsabs.harvard.edu/abs/1996swhs.conf..491B.
  4. Smith, Michael David (2004). The origin of stars. Imperial College Press. p. 176.ISBN 1-86094-501-5.
  5. Megeath, Tom (May 11, 2010). "Herschel finds a hole in space".ESA.[2]
  6. Mengel, J. G.; Demarque, P.; Sweigart, A. V.; Gross, P. G. (1979)."Stellar evolution from the zero-age main sequence".Astrophysical Journal Supplement Series 40: 733–791. doi:10.1086/190603.
  7. 7,0et7,1Sackmann, I. J.; Boothroyd, A. I.; Kraemer, K. E. (1993). "Our Sun. III. Present and Future". Astrophysical Journal 418: 457. doi:10.1086/173407.
  8. Wood, B. E.; Müller, H.-R.; Zank, G. P.; Linsky, J. L. (2002). "Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity". The Astrophysical Journal 574 (1): 412–425. doi:10.1086/340797.
  9. de Loore, C.; de Greve, J. P.; Lamers, H. J. G. L. M. (1977). "Evolution of massive stars with mass loss by stellar wind". Astronomy and Astrophysics 61 (2): 251–259.[3]
  10. "The evolution of stars between 50 and 100 times the mass of the Sun". Royal Greenwich Observatory.[4]
  11. Richmond, Michael. "Late stages of evolution for low-mass stars". Rochester Institute of Technology.[5]
  12. Pizzolato, N.; Ventura, P.; D'Antona, F.; Maggio, A.; Micela, G.; Sciortino, S. (2001). "Subphotospheric convection and magnetic activity dependence on metallicity and age: Models and tests". Astronomy & Astrophysics 373: 597–607. doi:10.1051/0004-6361:20010626.
  13. "Mass loss and Evolution". UCL Astrophysics Group.[6]
  14. Schröder, K.-P.; Smith, Robert Connon (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386: 155. doi:10.1111/j.1365-2966.2008.13022.x
  15. Palmer, Jason (2008-02-22). "Hope dims that Earth will survive Sun's death". NewScientist news service.[7]
  16. 16,016,1et16,2ben, Icko, Jr. (1991). "Single and binary star evolution". Astrophysical Journal Supplement Series 76: 55–114. doi:10.1086/191565.
  17. Liebert, J. (1980). "White dwarf stars". Annual review of astronomy and astrophysics 18 (2): 363–398. doi:10.1146/annurev.aa.18.090180.002051.
  18. 18,018,1et18,2"Introduction to Supernova Remnants". Goddard Space Flight Center.
  19. Fryer, C. L. (2003). "Black-hole formation from stellar collapse". Classical and Quantum Gravity 20: S73–S80. doi:10.1088/0264-9381/20/10/309.
  20. Smith, Nathan (1998). "The Behemoth Eta Carinae: A Repeat Offender". Mercury Magazine (Astronomical Society of the Pacific) 27: 20.[8]
  21. Weighing the Smallest Stars,ESO, 19 de genier de 2005,[9]
  22. Boss, Alan (2001-04-03). "Are They Planets or What?". Carnegie Institution of Washington.
  23. Shiga, David (2006-08-17). "Mass cut-off between stars and brown dwarfs revealed". New Scientist.
  24. Frebel, A.; Norris, J. E.; Christlieb, N.; Thom, C.; Beers, T. C.; Rhee, J (2007-05-11). "Nearby Star Is A Galactic Fossil". Science Daily.[10]
  25. Frebel, Anna, et al (May, 2007). "Discovery of HE 1523-0901, a Strongly r-Process-enhanced Metal-poor Star with Detected Uranium". Astrophysical Journal Letters 660 (2): L117–L120. doi:10.1086/518122.
  26. Laughlin, G.; Bodenheimer, P.; Adams, F. C. (1997). "The End of the Main Sequence". The Astrophysical Journal 482: 420–432. doi:10.1086/304125.
  27. Irwin, Judith A. (2007). Astrophysics: Decoding the Cosmos. John Wiley and Sons. p. 78.ISBN 0-470-01306-0.
  28. Fischer, D. A.; Valenti, J. (2005). "The Planet-Metallicity Correlation". The Astrophysical Journal 622 (2): 1102–1117. doi:10.1086/428383
  29. Feltzing, S.; Gonzalez, G. (2000). "The nature of super-metal-rich stars: Detailed abundance analysis of 8 super-metal-rich star candidates". Astronomy & Astrophysics 367: 253–265. doi:10.1051/0004-6361:20000477.
  30. Gray, David F. (1992). The Observation and Analysis of Stellar Photospheres. Cambridge University Press. pp. 413–414.ISBN 0-521-40868-7.
  31. Ragland, S.; Chandrasekhar, T.; Ashok, N. M. (1995). "Angular Diameter of Carbon Star Tx-Piscium from Lunar Occultation Observations in the Near Infrared". Journal of Astrophysics and Astronomy 16: 332.[11].
  32. Elmegreen, B.; Efremov, Y. N. (1999). "The Formation of Star Clusters". American Scientist 86 (3): 264. doi:10.1511/1998.3.264.
  33. Brainerd, Jerome James (7 de junh de 2005).X-rays from Stellar Coronas.The Astrophysics Spectator.[12].
  34. erdyugina, Svetlana V. (2005). "Starspots: A Key to the Stellar Dynamo". Living Reviews.[13]
  35. Fitzpatrick, Richard (2006-02-13). "Introduction to Plasma Physics: A graduate course". The University of Texas at Austin.[14]
  36. Hubble site,Hubble Astronomers Unveil "Crab Nebula - The Movie",30 de mai de 1996,[15]
  37. Strobel, Nick (2007-08-20).Properties of Stars: Color and Temperature.Astronomy Notes. Primis/McGraw-Hill, Inc.
  38. Smith, Gene (1999-04-16). "Stellar Spectra". University of California, San Diego.[16]
  39. Falk Herwig,Evolution of Asymptotic Giant Branch Stars,Annual Review of Astronomy & Astrophysics, 43, 435-479.
  40. H. L. Shipman,« Masses and radii of white-dwarf stars. III - Results for 110 hydrogen-rich and 28 helium-rich stars »,dans The Astrophysical Journal, vol. 228, février 1979, p. 240–256.
  41. Jennifer Johnson,Extreme Stars: White Dwarfs and Neutron Stars: Lecture notes,Astronomy 162, Ohio State University, Columbus, Ohio, (E.-U.)
  42. Jean-Pierre Luminet,Les trous noirs,Seuil, coll. « Points Sciences », 1992 (ISBN 978-2-02-015948-7), chap. « L'âge de cristal », p.107-108.

Bibliografia[modificar|Modificar lo còdi]