login
A006332
From the enumeration of corners.
(Formerly M2148)
3
0, 2, 28, 168, 660, 2002, 5096, 11424, 23256, 43890, 77924, 131560, 212940, 332514, 503440, 742016, 1068144, 1505826, 2083692, 2835560, 3801028, 5026098, 6563832, 8475040, 10829000, 13704210, 17189172, 21383208, 26397308, 32355010, 39393312, 47663616, 57332704
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Germain Kreweras,Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers,Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
Simon Plouffe,Approximations de séries génératrices et quelques conjectures,Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe,1031 Generating Functions,Appendix to Thesis, Montreal, 1992.
FORMULA
a(n) = (n*(1 + n)^2*(2 + n)*(1 + 2*n)*(3 + 2*n))/90.
a(n) = 2*A006858(n).
a(n) = (-1)^(n+1)*A132339(3, n).
G.f.: 2*(1+x)*(1 + 6*x + x^2)/(1-x)^7.
FromG. C. Greubel,Dec 14 2021: (Start)
E.g.f.: (1/90)*x*(180 + 1080*x + 1350*x^2 + 555*x^3 + 84*x^4 + 4*x^5)*exp(x).
a(n) = binomial(n+2, 3)*binomial(2*n+3, 3)/5. (End)
FromAmiram Eldar,Jul 10 2023: (Start)
Sum_{n>=1} 1/a(n) = 15*Pi^2 - 295/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = -15*Pi^2/2 + 120*Pi - 605/2. (End)
MAPLE
A006332:=-2*(1+z)*(z**2+6*z+1)/(z-1)**7; # conjectured bySimon Plouffein his 1992 dissertation
MATHEMATICA
Table[(n(1+n)^2(2+n)(1+2n)(3+2n))/90, {n, 0, 30}] (* or *)
{0}~Join~CoefficientList[Series[2(x+1)(x^2 +6x +1)/(1-x)^7, {x, 0, 29}], x] (*Michael De Vlieger,Mar 26 2016 *)
PROG
(PARI) my(x='x+O('x^99)); concat(0, Vec(2*(x+1)*(x^2+6*x+1)/(1-x)^7)) \\Altug Alkan,Mar 26 2016
(Magma) [Binomial(n+2, 3)*Binomial(2*n+3, 3)/5: n in [0..30]]; //G. C. Greubel,Dec 14 2021
(Sage) [binomial(n+2, 3)*binomial(2*n+3, 3)/5 for n in (0..30)] #G. C. Greubel,Dec 14 2021
KEYWORD
nonn,easy
STATUS
approved