login
A028230
Bisection ofA001353.Indices of square numbers which are also octagonal.
21
1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665, 30100488280951055759, 419245718107612602961, 5839339565225625385695
OFFSET
1,2
COMMENTS
Chebyshev S-sequence with Diophantine property.
4*b(n)^2 - 3*a(n)^2 = 1 with b(n) =A001570(n), n>=0.
y satisfying the Pellian x^2 - 3*y^2 = 1, for even x given byA094347(n). -Lekraj Beedassy,Jun 03 2004
a(n) = L(n,-14)*(-1)^n, where L is defined as inA108299;see alsoA001570for L(n,+14). -Reinhard Zumkeller,Jun 01 2005
Product x*y, where the pair (x, y) solves for x^2 - 3y^2 = -2, i.e., a(n) =A001834(n)*A001835(n). -Lekraj Beedassy,Jul 13 2006
Numbers n such that RootMeanSquare(1,3,...,2*A001570(k)-1) = n. -Ctibor O. Zizka,Sep 04 2008
As n increases, this sequence is approximately geometric with common ratio r = lim(n -> oo, a(n)/a(n-1)) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). -Ant King,Nov 15 2011
REFERENCES
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
LINKS
K. Andersen, L. Carbone, and D. Penta,Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields,Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Alex Fink, Richard K. Guy, and Mark Krusemeyer,Partitions with parts occurring at most thrice,Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
T. N. E. Greville,Table for third-degree spline interpolations with equally spaced arguments,Math. Comp., 24 (1970), 179-183.
W. D. Hoskins,Table for third-degree spline interpolation using equi-spaced knots,Math. Comp., 25 (1971), 797-801.
Tanya Khovanova,Recursive Sequences
E. Kilic, Y. T. Ulutas, and N. Omur,A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters,J. Int. Seq. 14 (2011) #11.5.6, table 4, k=1, t=2.
Dino Lorenzini, and Z. Xiang,Integral points on variable separated curves,Preprint 2016.
F. V. Waugh and M. W. Maxfield,Side-and-diagonal numbers,Math. Mag., 40 (1967), 74-83.
Eric Weisstein's World of Mathematics,Octagonal Square Number.
FORMULA
a(n) = 2*A001921(n)+1.
a(n) = 14*a(n-1) - a(n-2) for n>1.
a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x):= U(n, x/2) Chebyshev's polynomials of the second kind. SeeA049310.S(-1, x) = 0, S(n, 14) =A007655(n+1) and S(n, 4) =A001353(n+1).
G.f.: x*(1+x)/(1-14*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap:= 2+sqrt(3) and am:= 2-sqrt(3).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*16^(n-k), n>=0.
a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).
a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - (A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. -Creighton Dement,Dec 04 2004
a(n) = f(a(n-1),7) + f(a(n-2),7), where f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. -Marcos Carreira,Dec 27 2006
FromAnt King,Nov 15 2011: (Start)
a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).
a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)). (End)
a(n) =A001353(n)^2-A001353(n-1)^2. -Antonio Alberto Olivares,Apr 06 2020
E.g.f.: 1 - exp(7*x)*(3*cosh(4*sqrt(3)*x) - 2*sqrt(3)*sinh(4*sqrt(3)*x))/3. -Stefano Spezia,Dec 12 2022
a(n) = sqrt(A036428(n)). -Bernard Schott,Dec 19 2022
MAPLE
seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); #G. C. Greubel,Dec 06 2019
MATHEMATICA
LinearRecurrence[{14, - 1}, {1, 15}, 17] (*Ant King,Nov 15 2011 *)
CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (*Vincenzo Librandi,Jun 17 2014 *)
PROG
(Sage) [(lucas_number2(n, 14, 1)-lucas_number2(n-1, 14, 1))/12 for n in range(1, 18)] #Zerinvary Lajos,Nov 10 2009
(PARI) Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\Charles R Greathouse IV,Jun 16 2014
(PARI) isok(n) = ispolygonal(n^2, 8); \\Michel Marcus,Jul 09 2017
(Magma) I:=[1, 15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; //G. C. Greubel,Dec 06 2019
(GAP) a:=[1, 15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; #G. C. Greubel,Dec 06 2019
KEYWORD
nonn,easy
EXTENSIONS
Additional comments fromWolfdieter Lang,Nov 29 2002
Incorrect recurrence relation deleted byAnt King,Nov 15 2011
Minor edits byVaclav Kotesovec,Jan 28 2015
STATUS
approved