login
A078986
Chebyshev T(n,19) polynomial.
18
1, 19, 721, 27379, 1039681, 39480499, 1499219281, 56930852179, 2161873163521, 82094249361619, 3117419602578001, 118379850648602419, 4495316905044313921, 170703662541035326579, 6482243859654298096081, 246154563004322292324499, 9347391150304592810234881, 354954709148570204496600979, 13478931556495363178060602321
OFFSET
0,2
COMMENTS
a(n+1)^2 - 10*(6*A078987(n))^2 = 1, n >= 0 (Pell equation +1, seeA033313andA033317).
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r=sqrt(10). -Benoit Cloitre,Feb 14 2004
Numbers n such that 10*(n^2 - 1) is a square. -Vincenzo Librandi,Aug 08 2010
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh,Ellipse Chains and Associated Sequences,J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Tanya Khovanova,Recursive Sequences
FORMULA
a(n) = 38*a(n-1) - a(n-2), a(-1):= 19, a(0)=1.
G.f.: (1-19*x)/(1-38*x+x^2).
a(n) = T(n, 19) = (S(n, 38)-S(n-2, 38))/2 = S(n, 38)-19*S(n-1, 38) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. SeeA053120andA049310.S(n, 38) =A078987(n).
a(n) = (ap^n + am^n)/2 with ap:= 19+6*sqrt(10) and am:= 19-6*sqrt(10).
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*19)^(n-2*k), n >= 1.
a(n) = cosh(2*arcsinh(3)*n). -Herbert Kociemba,Apr 24 2008
MATHEMATICA
LinearRecurrence[{38, -1}, {1, 19}, 15] (*Ray Chandler,Aug 11 2015 *)
PROG
(Sage) [lucas_number2(n, 38, 1)/2 for n in range(0, 16)] #Zerinvary Lajos,Nov 07 2009
(PARI) a(n) = polchebyshev(n, 1, 19); \\Michel Marcus,Jan 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang,Jan 10 2003
EXTENSIONS
More terms fromIndranil Ghosh,Feb 04 2017
STATUS
approved