login
A002700
Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).
(Formerly M3147 N1275)
6
3, 40, 336, 2304, 14080, 79872, 430080, 2228224, 11206656, 55050240, 265289728, 1258291200, 5888802816, 27246198784, 124822487040, 566935683072, 2555505541120, 11441792876544, 50921132261376, 225399883694080, 992858999881728, 4354066045992960
OFFSET
1,1
REFERENCES
Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Cornelius Lanczos,Applied Analysis.(Annotated scans of selected pages)
Simon Plouffe,Approximations de séries génératrices et quelques conjectures,Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe,1031 Generating Functions,Appendix to Thesis, Montreal, 1992.
FORMULA
a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3). -Colin Barker,Jun 15 2015
a(n) = 1/2*Sum_{k = 0..2*n} k^2*binomial(2*n,k). Cf.A002699.-Peter Bala,Apr 09 2017
FromAmiram Eldar,Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 8 + 8*log(2) - 12*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*arctan(1/2) + 4*log(5/4) - 8. (End)
MAPLE
A002700:=-(3+4*z)/(4*z-1)**3; #Simon Plouffein his 1992 dissertation.
MATHEMATICA
Table[n*(2*n+1)*2^(2*n-2), {n, 1, 30}] (*Vaclav Kotesovec,Jun 03 2014 *)
LinearRecurrence[{12, -48, 64}, {3, 40, 336}, 30] (*Harvey P. Dale,May 17 2018 *)
PROG
(PARI) Vec(-x*(4*x+3)/(4*x-1)^3 + O(x^30)) \\Colin Barker,Jun 15 2015
(Magma) [4^(n-1)*n*(2*n+1): n in [1..30]]; //G. C. Greubel,Jul 23 2019
(Sage) [4^(n-1)*n*(2*n+1) for n in (1..30)] #G. C. Greubel,Jul 23 2019
(GAP) List([1..30], n-> 4^(n-1)*n*(2*n+1)); #G. C. Greubel,Jul 23 2019
KEYWORD
nonn,easy
STATUS
approved