OFFSET
1,3
COMMENTS
Also called Eulerian graphs of strength 1.
"Switching" a graph at a node complements all the edges incident with that node. The illustration (see link) shows the 3 switching classes on 4 nodes. Switching at any node is the equivalence relation.
"Switching" a signed simple graph at a node negates the signs of all edges incident with that node.
A graph is an Euler graph iff every node has even degree. It need not be connected. (Note that some graph theorists require an Euler graph to be connected so it has an Euler circuit, and call these graphs "even" graphs.)
The objects being counted in this sequence are unlabeled.
REFERENCES
F. Buekenhout, ed., Handbook of Incidence Geometry, 1995, p. 881.
F. C. Bussemaker, R. A. Mathon and J. J. Seidel, Tables of two-graphs, T.H.-Report 79-WSK-05, Technological University Eindhoven, Dept. Mathematics, 1979; also pp. 71-112 of "Combinatorics and Graph Theory (Calcutta, 1980)", Lect. Notes Math. 885, 1981.
CRC Handbook of Combinatorial Designs, 1996, p. 687.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 114, Eq. (4.7.1).
R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.
J. J. Seidel, A survey of two-graphs, pp. 481-511 of Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Vol. I, Accademia Nazionale dei Lincei, Rome, 1976; also pp. 146-176 in Geometry and Combinatorics: Selected Works of J.J. Seidel, ed. D.G. Corneil and R. Mathon, Academic Press, Boston, 1991..
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Max Alekseyev,Table of n, a(n) for n = 1..88(terms 1..26 from R. W. Robinson).
P. J. Cameron,Cohomological aspects of two-graphs,Math. Zeit., 157 (1977), 101-119.
P. J. Cameron,Sequences realized by oligomorphic permutation groups,J. Integ. Seqs., 3 (2000), #00.1.5.
P. J. Cameron and C. R. Johnson,The number of equivalence patterns of symmetric sign patterns,Discr. Math., 306 (2006), 3074-3077.
G. Greaves, J. H. Koolen, A. Munemasa, and F. Szöllősi,Equiangular lines in Euclidean spaces,arXiv:1403.2155 [math.CO], 2014.
Akihiro Higashitani and Kenta Ueyama,Combinatorial classification of (+/-1)-skew projective spaces,arXiv:2107.12927 [math.RA], 2021.
Akihiro Higashitani and Kenta Ueyama,Combinatorics of graded module categories over skew polynomial algebras at roots of unity,arXiv:2409.10904 [math.RA], 2024. See p. 11.
T. R. Hoffman and J. P. Solazzo,Complex Two-Graphs via Equiangular Tight Frames,arXiv:1408.0334 [math.CO], 2014.
Michael Hofmeister,Counting double covers of graphs,Journal of Graph Theory 12.3 (1988), 437-444. (Beware of a typo!)
V. A. Liskovec,Enumeration of Euler Graphs,(in Russian), Akademiia Navuk BSSR, Minsk., 6 (1970), 38-46. (annotated scanned copy)
C. L. Mallows and N. J. A. Sloane,Two-graphs, switching classes and Euler graphs are equal in number,SIAM J. Appl. Math., 28 (1975), 876-880. (copyat N. J. A. Sloane's home page)
Brendan D. McKay,Eulerian graphs
R. E. Peile,Letter to N. J. A. Sloane, Feb 1989.
R. C. Read,Letter to N. J. A. Sloane, Nov. 1976.
R. W. Robinson,Enumeration of Euler graphs,pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969. (Annotated scanned copy)
N. J. A. Sloane,Switching classes of graphs with 4 nodes.
F. Szöllosi and Patric R. J. Östergård,Enumeration of Seidel matrices,arXiv:1703.02943 [math.CO], 2017.
E. Weisstein's World of Mathematics,Eulerian Graph.
T. Zaslavsky,Signed graphs,Discrete Appl. Math. 4 (1982), 47-74.
FORMULA
a(n) = Sum_{s} 2^M(s)/Product_{i} i^s(i)*s(i)!, where the sum is over n-tuples s in [0..n]^n such that n = Sum i*s(i), M(s) = Sum_{i<j} s(i)*s(j)*gcd(i,j) + Sum_{i} (s(i)*(floor(i/2) - 1) + i*binomial(s(i),2)) + sign(Sum_{k} s(2*k+1)). [Robinson's formula, from Mallows & Sloane, simplified.] -M. F. Hasler,Apr 15 2012; corrected bySean A. Irvine,Nov 05 2014
EXAMPLE
FromJoerg Arndt,Feb 05 2010: (Start)
The a(4) = 3 Euler graphs on four nodes are:
1) o o 2) o-o 3) o-o
o o |/ | |
o o o-o
(End)
PROG
(PARI)A002854(n)={ /* Robinson's formula, simplified */ local(s=vector(n)); my( S=0, M()=sum( j=2, n, s[j]*sum( i=1, j-1, s[i]*gcd(i, j))) + sum( i=1, n, i*binomial(s[i], 2)+(i\2-1)*s[i]) +!!vecextract(s, 4^round(n/2)\3), inc()=!forstep(i=n, 1, -1, s[i]<n\i && s[i]++ && return; s[i]=0), t); until(inc(), t=0; for( i=1, n, if( n < t+=i*s[i], until(i++>n, s[i]=n); next(2))); t==n && S+=2^M()/prod(i=1, n, i^s[i]*s[i]!)); S} \\M. F. Hasler,Apr 09 2012, adapted for current PARI version on Apr 12, 2018
(Python)
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
defA002854(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum(((q>>1)-1)*r+(q*r*(r-1)>>1) for q, r in p.items())+any(q&1 for q in p), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) #Chai Wah Wu,Jul 03 2024
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Terms up to a(18) confirmed byVladeta Jovovic,Apr 18 2000
Name edited (changed "2-graph" to "two-graph" to avoid confusion with other 2-graphs) and comments on Eulerian graphs byThomas Zaslavsky,Nov 21 2013
Name clarified byThomas Zaslavsky,Apr 18 2019
STATUS
approved