login
A007417
If k appears, 3k does not.
(Formerly M0954)
19
1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100
OFFSET
1,2
COMMENTS
The characteristic function of this sequence is given byA014578.-Philippe Deléham,Mar 21 2004
Numbers whose ternary representation ends in even number of zeros. -Philippe Deléham,Mar 25 2004
Numbers for which 3 is not an infinitary divisor. -Vladimir Shevelev,Mar 18 2013
Where odd terms occur inA051064.-Reinhard Zumkeller,May 23 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Iain Fox,Table of n, a(n) for n = 1..10000(first 1000 terms from T. D. Noe)
Aviezri S. Fraenkel,The vile, dopey, evil and odious game players,Discrete Math. 312 (2012), no. 1, 42-46.
David Wakeham and David R. Wood,On multiplicative Sidon sets,INTEGERS, 13 (2013), #A26.
FORMULA
Limit_{n->infinity} a(n)/n = 4/3. -Philippe Deléham,Mar 21 2004
Partial sums ofA092400.Indices of even numbers inA007949.Indices of odd numbers inA051064.a(n) =A092401(2n-1). -Philippe Deléham,Mar 29 2004
{a(n)} =A052330({A042948(n)}), where {a(n)} denotes the set of integers in the sequence. -Peter Munn,Aug 31 2019
EXAMPLE
FromGary W. Adamson,Mar 02 2010: (Start)
Given the following multiplication table: top row = "not multiples of 3", left column = powers of 3; we get:
...
1 2 4 5 7 8 10 11 13
3 6 12 15 21 24 30 33 39
9 18 36 45 63 72 90 99 114
27 54 108
81
... If rows are labeled (1, 2, 3,...) then odd-indexed rows are in the set; but evens not. Examples: 9 is in the set since 3 is not, but 27 in row 4 can't be. (End)
MATHEMATICA
Select[ Range[100], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // EvenQ)&] (*Jean-François Alcover,Mar 01 2013, afterPhilippe Deléham*)
Select[Range[100], EvenQ@ IntegerExponent[#, 3] &] (*Michael De Vlieger,Sep 01 2020 *)
PROG
(Haskell)
import Data.List (delete)
a007417 n = a007417_list!! (n-1)
a007417_list = s [1..] where
s (x:xs) = x: s (delete (3*x) xs)
(PARI) is(n) = { my(i = 0); while(n%3==0, n/=3; i++); i%2==0; } \\Iain Fox,Nov 17 2017
(PARI) is(n)=valuation(n, 3)%2==0; \\Joerg Arndt,Aug 08 2020
CROSSREFS
Complement ofA145204.-Reinhard Zumkeller,Oct 04 2008
Cf.A007949,A014578(characteristic function),A042948,A051064,A052330,A092400,A092401.
KEYWORD
easy,nonn
EXTENSIONS
More terms fromPhilippe Deléham,Mar 29 2004
Typo corrected byPhilippe Deléham,Apr 15 2010
STATUS
approved