OFFSET
1,2
COMMENTS
The characteristic function of this sequence is given byA014578.-Philippe Deléham,Mar 21 2004
Numbers whose ternary representation ends in even number of zeros. -Philippe Deléham,Mar 25 2004
Numbers for which 3 is not an infinitary divisor. -Vladimir Shevelev,Mar 18 2013
Where odd terms occur inA051064.-Reinhard Zumkeller,May 23 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Iain Fox,Table of n, a(n) for n = 1..10000(first 1000 terms from T. D. Noe)
Aviezri S. Fraenkel,The vile, dopey, evil and odious game players,Discrete Math. 312 (2012), no. 1, 42-46.
S. Plouffe,Email to N. J. A. Sloane, Jun. 1994
David Wakeham and David R. Wood,On multiplicative Sidon sets,INTEGERS, 13 (2013), #A26.
FORMULA
Limit_{n->infinity} a(n)/n = 4/3. -Philippe Deléham,Mar 21 2004
Partial sums ofA092400.Indices of even numbers inA007949.Indices of odd numbers inA051064.a(n) =A092401(2n-1). -Philippe Deléham,Mar 29 2004
{a(n)} =A052330({A042948(n)}), where {a(n)} denotes the set of integers in the sequence. -Peter Munn,Aug 31 2019
EXAMPLE
FromGary W. Adamson,Mar 02 2010: (Start)
Given the following multiplication table: top row = "not multiples of 3", left column = powers of 3; we get:
...
1 2 4 5 7 8 10 11 13
3 6 12 15 21 24 30 33 39
9 18 36 45 63 72 90 99 114
27 54 108
81
... If rows are labeled (1, 2, 3,...) then odd-indexed rows are in the set; but evens not. Examples: 9 is in the set since 3 is not, but 27 in row 4 can't be. (End)
MATHEMATICA
Select[ Range[100], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // EvenQ)&] (*Jean-François Alcover,Mar 01 2013, afterPhilippe Deléham*)
Select[Range[100], EvenQ@ IntegerExponent[#, 3] &] (*Michael De Vlieger,Sep 01 2020 *)
PROG
(Haskell)
import Data.List (delete)
a007417 n = a007417_list!! (n-1)
a007417_list = s [1..] where
s (x:xs) = x: s (delete (3*x) xs)
(PARI) is(n) = { my(i = 0); while(n%3==0, n/=3; i++); i%2==0; } \\Iain Fox,Nov 17 2017
(PARI) is(n)=valuation(n, 3)%2==0; \\Joerg Arndt,Aug 08 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms fromPhilippe Deléham,Mar 29 2004
Typo corrected byPhilippe Deléham,Apr 15 2010
STATUS
approved