login
A013960
a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.
10
1, 4097, 531442, 16781313, 244140626, 2177317874, 13841287202, 68736258049, 282430067923, 1000244144722, 3138428376722, 8918294543346, 23298085122482, 56707753666594, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequencesA017665-A017712also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequencesA000203(k=1),A001157-A001160(k=2,3,4,5),A013954-A013972for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^12*x^k/(1-x^k). -Benoit Cloitre,Apr 21 2003
Dirichlet g.f.: zeta(s-12)*zeta(s). -Ilya Gutkovskiy,Sep 10 2016
FromAmiram Eldar,Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(12*e+12)-1)/(p^12-1).
Sum_{k=1..n} a(k) = zeta(13) * n^13 / 13 + O(n^14). (End)
MATHEMATICA
DivisorSigma[12, Range[20]] (*Harvey P. Dale,Jan 28 2015 *)
PROG
(Sage) [sigma(n, 12) for n in range(1, 17)] #Zerinvary Lajos,Jun 04 2009
(Magma) [DivisorSigma(12, n): n in [1..20]]; //Vincenzo Librandi,Sep 10 2016
(PARI) my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^12*q^n/(1-q^n))) \\Altug Alkan,Sep 10 2016
(PARI) a(n) = sigma(n, 12); \\Amiram Eldar,Oct 29 2023
KEYWORD
nonn,mult,easy
STATUS
approved