login
A024916
a(n) = Sum_{k=1..n} k*floor(n/k); also Sum_{k=1..n} sigma(k) where sigma(n) = sum of divisors of n (A000203).
224
1, 4, 8, 15, 21, 33, 41, 56, 69, 87, 99, 127, 141, 165, 189, 220, 238, 277, 297, 339, 371, 407, 431, 491, 522, 564, 604, 660, 690, 762, 794, 857, 905, 959, 1007, 1098, 1136, 1196, 1252, 1342, 1384, 1480, 1524, 1608, 1686, 1758, 1806, 1930, 1987, 2080, 2152
OFFSET
1,2
COMMENTS
Row sums of triangleA128489.E.g., a(5) = 15 = (10 + 3 + 1 + 1), sum of row 4 terms of triangleA128489.-Gary W. Adamson,Jun 03 2007
Row sums of triangleA134867.-Gary W. Adamson,Nov 14 2007
a(10^4) = 82256014, a(10^5) = 8224740835, a(10^6) = 822468118437, a(10^7) = 82246711794796; seeA072692.-M. F. Hasler,Nov 22 2007
Equals row sums of triangleA158905.-Gary W. Adamson,Mar 29 2009
n is prime if and only if a(n) - a(n-1) - 1 = n. -Omar E. Pol,Dec 31 2012
Also the alternating row sums ofA236104.-Omar E. Pol,Jul 21 2014
a(n) is also the total number of parts in all partitions of the positive integers <= n into equal parts. -Omar E. Pol,Apr 30 2017
a(n) is also the total area of the terraces of the stepped pyramid with n levels described inA245092.-Omar E. Pol,Nov 04 2017
a(n) is also the area under the Dyck path described in the n-th row ofA237593(see example). -Omar E. Pol,Sep 17 2018
FromOmar E. Pol,Feb 17 2020: (Start)
Convolution ofA340793andA000027.
Convolved withA340793givesA000385.(End)
a(n) is also the number of cubic cells (or cubes) in the n-th level starting from the top of the stepped pyramid described inA245092.-Omar E. Pol,Jan 12 2022
REFERENCES
Hardy and Wright, "An introduction to the theory of numbers", Oxford University Press, fifth edition, p. 266.
LINKS
Daniel Mondot,Table of n, a(n) for n = 1..10000(first 1000 terms from T. D. Noe)
P. L. Patodia (pannalal(AT)usa.net),PARI program for A072692 and A024916.
A. Walfisz,Weylsche Exponentialsummen in der neueren Zahlentheorie,ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 44, Issue 12, page 607, 1964.
FORMULA
FromBenoit Cloitre,Apr 28 2002: (Start)
a(n) = n^2 -A004125(n).
Asymptotically a(n) = n^2*Pi^2/12 + O(n*log(n)). (End)
G.f.: (1/(1-x))*Sum_{k>=1} x^k/(1-x^k)^2. -Benoit Cloitre,Apr 23 2003
a(n) = Sum_{m=1..n} (n - (n mod m)). -Roger L. BagulaandGary W. Adamson,Oct 06 2006
a(n) = n^2*Pi^2/12 + O(n*log(n)^(2/3)) [Walfisz]. -Charles R Greathouse IV,Jun 19 2012
a(n) =A000217(n) +A153485(n). -Omar E. Pol,Jan 28 2014
a(n) =A000292(n) -A076664(n), n > 0. -Omar E. Pol,Feb 11 2014
a(n) =A078471(n) +A271342(n). -Omar E. Pol,Apr 08 2016
a(n) = (1/2)*(A222548(n) +A006218(n)). -Ridouane Oudra,Aug 03 2019
FromGreg Dresden,Feb 23 2020: (Start)
a(n) =A092406(n) + 8, n>3.
a(n) =A160664(n) - 1, n>0. (End)
a(2*n) =A326123(n) +A326124(n). -Vaclav Kotesovec,Aug 18 2021
a(n) = Sum_{k=1..n} k *A010766(n,k). -Georg Fischer,Mar 04 2022
EXAMPLE
FromOmar E. Pol,Aug 20 2021: (Start)
For n = 6 the sum of all divisors of the first six positive integers is [1] + [1 + 2] + [1 + 3] + [1 + 2 + 4] + [1 + 5] + [1 + 2 + 3 + 6] = 1 + 3 + 4 + 7 + 6 + 12 = 33, so a(6) = 33.
On the other hand the area under the Dyck path of the 6th diagram as shown below is equal to 33, so a(6) = 33.
Illustration of initial terms: _ _ _ _
_ _ _ | |_
_ _ _ | | | |_
_ _ | |_ | |_ _ | |
_ _ | |_ | | | | | |
_ | | | | | | | | | |
|_| |_ _| |_ _ _| |_ _ _ _| |_ _ _ _ _| |_ _ _ _ _ _|
.
1 4 8 15 21 33 (End)
MAPLE
A024916:= proc(n)
add(numtheory[sigma](k), k=0..n);
end proc: #Zerinvary Lajos,Jan 11 2009
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 0,
numtheory[sigma](n)+a(n-1))
end:
seq(a(n), n=1..100); #Alois P. Heinz,Sep 12 2019
MATHEMATICA
Table[Plus @@ Flatten[Divisors[Range[n]]], {n, 50}] (*Alonso del Arte,Mar 06 2006 *)
Table[Sum[n - Mod[n, m], {m, n}], {n, 50}] (*Roger L. BagulaandGary W. Adamson,Oct 06 2006 *)
a[n_]:= Sum[DivisorSigma[1, k], {k, n}]; Table[a[n], {n, 51}] (*Jean-François Alcover,Dec 16 2011 *)
Accumulate[DivisorSigma[1, Range[60]]] (*Harvey P. Dale,Mar 13 2014 *)
PROG
(PARI)A024916(n)=sum(k=1, n, n\k*k) \\M. F. Hasler,Nov 22 2007
(PARI)A024916(z) = { my(s, u, d, n, a, p); s = z*z; u = sqrtint(z); p = 2; for(d=1, u, n = z\d - z\(d+1); if(n<=1, p=d; break(), a = z%d; s -= (2*a+(n-1)*d)*n/2); ); u = z\p; for(d=2, u, s -= z%d); return(s); } \\ See the link for a nicely formatted version. - P. L. Patodia (pannalal(AT)usa.net), Jan 11 2008
(PARI)A024916(n)={my(s=0, d=1, q=n); while(d<q, s+=q*(q+1+2*d)\2; d++; q=n\d; ); return(s-d*(d-1)\2*d+q*(q+1)\2); } \\Peter Polm,Aug 18 2014
(PARI)A024916(n)={ my(s=n^2, r=sqrtint(n), nd=n, D); for(d=1, r, (1>=D=nd-nd=n\(d+1)) && (r=d-1) && break; s -= n%d*D+(D-1)*D\2*d); s - sum(d=2, n\(r+1), n%d)} \\ Slightly optimized version of Patodia's code. -M. F. Hasler,Apr 18 2015
(C#) See Polm link.
(Haskell)
a024916 n = sum $ map (\k -> k * div n k) [1..n]
--Reinhard Zumkeller,Apr 20 2015
(Magma) [(&+[DivisorSigma(1, k): k in [1..n]]): n in [1..60]]; //G. C. Greubel,Mar 15 2019
(Sage) [sum(sigma(k) for k in (1..n)) for n in (1..60)] #G. C. Greubel,Mar 15 2019
(Python)
defA024916(n): return sum(k*(n//k) for k in range(1, n+1)) #Chai Wah Wu,Dec 17 2021
(Python)
from math import isqrt
defA024916(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1, s+1)))>>1 #Chai Wah Wu,Oct 21 2023
KEYWORD
nonn,nice
STATUS
approved