login
A048903
Heptagonal hexagonal numbers.
4
1, 121771, 12625478965, 1309034909945503, 135723357520344181225, 14072069153115290487843091, 1459020273797576190840203197981, 151274140013808225465578657485241095, 15684405383452644158924550174544564031953, 1626190518815862911671806985731550830475727995
OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity,a(n)/a(n-1)) = (2+sqrt(5))^8 = 51841+23184*sqrt(5). -Ant King,Dec 24 2011
LINKS
Eric Weisstein's World of Mathematics,Heptagonal Hexagonal Number
FORMULA
FromAnt King,Dec 24 2011: (Start)
G.f.: x*(1+18088*x+55*x^2)/((1-x)*(1-103682*x+x^2)).
a(n) = 103683*a(n-1)-103683*a(n-2)+a(n-3).
a(n) = 103682*a(n-1)-a(n-2)+18144.
a(n) = 1/80*((sqrt(5)-1)*(2+sqrt(5))^(8n-5)- (sqrt(5)+1)*(2-sqrt(5))^(8n-5)-14).
a(n) = floor(1/80*(sqrt(5)-1)*(2+sqrt(5))^(8n-5)).
(End)
MATHEMATICA
LinearRecurrence[{103683, -103683, 1}, {1, 121771, 12625478965}, 8]; (*Ant King,Dec 24 2011 *)
PROG
(PARI) Vec(-x*(55*x^2+18088*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20)) \\Colin Barker,Jun 23 2015
KEYWORD
nonn,easy
STATUS
approved