login
A048915
9-gonal pentagonal numbers.
3
1, 651, 180868051, 95317119801, 26472137730696901, 13950766352135999751, 3874504486629442861646551, 2041856512426320950146560501, 567078683619272811125915867157001, 298849390212849227278846377616002051, 82998544594567922836927983404875025948251
OFFSET
1,2
COMMENTS
FromAnt King,Dec 20 2011: (Start)
lim(n->Infinity, a(2n+1)/a(2n))=1/2*(277727+60605*sqrt(21)).
lim(n->Infinity, a(2n)/a(2n-1))=1/2*(527+115*sqrt(21)).
(End)
LINKS
Eric Weisstein's World of Mathematics,Nonagonal Pentagonal Number.
FORMULA
FromAnt King,Dec 20 2011: (Start)
a(n) = 146361602*a(n-2)-a(n-4)+35719200.
a(n) = a(n-1)+146361602*a(n-2)-146361602*a(n-3)-a(n-4)+a(n-5).
a(n) = 1/336*((25+4*sqrt(21))*(5-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(4n-4)+ (25-4*sqrt(21))*(5+sqrt(21)*(-1)^n)*(2*sqrt(7)-3*sqrt(3))^(4n-4)-82).
a(n) = floor(1/336*(25+4*sqrt(21))*(5-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(4n-4)).
G.f.: x*(1+650*x+34505798*x^2+1210450*x^3+2301*x^4) / ((1-x)*(1-12098*x+x^2)*(1+12098*x+x^2)).
(End)
MATHEMATICA
LinearRecurrence[{1, 146361602, -146361602, -1, 1}, {1, 651, 180868051, 95317119801, 26472137730696901}, 9] (*Ant King,Dec 20 2011 *)
PROG
(PARI) Vec(x*(1+650*x+34505798*x^2+1210450*x^3+2301*x^4)/((1-x)*(1-12098*x+x^2)*(1+12098*x+x^2)) + O(x^20)) \\Colin Barker,Jun 22 2015
KEYWORD
nonn,easy
STATUS
approved