OFFSET
0,3
COMMENTS
Also, sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 18,..., in the square spiral whose vertices are the triangular numbersA000217.-Omar E. Pol,Apr 26 2008
This sequence does not contain any triangular numbers other than 0 and 1. SeeA188892.-T. D. Noe,Apr 13 2011
Also sequence found by reading the line from 0, in the direction 0, 18,... and the parallel line from 1, in the direction 1, 51,..., in the square spiral whose vertices are the generalized 18-gonal numbers. -Omar E. Pol,Jul 18 2012
Partial sums of 16n + 1 (with offset 0), compareA005570.-Jeremy Gardiner,Aug 04 2012
All x values for Diophantine equation 32*x + 49 = y^2 are given by this sequence andA139278.-Bruno Berselli,Nov 11 2014
This is also a star enneagonal number: a(n) =A001106(n) + 9*A000217(n-1). -Luciano Ancora,Mar 30 2015
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
LINKS
Jeremy Gardiner,Table of n, a(n) for n = 0..999
Wikipedia,Polygonal number.
Index entries for linear recurrences with constant coefficients,signature (3,-3,1).
FORMULA
G.f.: x*(1+15*x)/(1-x)^3. -Bruno Berselli,Feb 04 2011
a(n) = 16*n + a(n-1) - 15, with n > 0, a(0) = 0. -Vincenzo Librandi,Aug 06 2010
a(16*a(n)+121*n+1) = a(16*a(n)+121*n) + a(16*n+1). -Vladimir Shevelev,Jan 24 2014
E.g.f.: (8*x^2 + x)*exp(x). -G. C. Greubel,Jul 18 2017
Sum_{n>=1} 1/a(n) = ((1+sqrt(2))*Pi + 2*sqrt(2)*arccoth(sqrt(2)) + 8*log(2))/14. -Amiram Eldar,Oct 20 2020
Product_{n>=2} (1 - 1/a(n)) = 8/9. -Amiram Eldar,Jan 22 2021
MAPLE
MATHEMATICA
Table[n (8 n - 7), {n, 0, 40}] (*Bruno Berselli,Nov 11 2014 *)
PROG
(PARI) a(n)=n*(8*n-7) \\Charles R Greathouse IV,Jul 19 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane,Dec 15 1999
STATUS
approved