login
A051920
a(n) = binomial(n, floor(n/2)) + 1.
9
2, 2, 3, 4, 7, 11, 21, 36, 71, 127, 253, 463, 925, 1717, 3433, 6436, 12871, 24311, 48621, 92379, 184757, 352717, 705433, 1352079, 2704157, 5200301, 10400601, 20058301, 40116601, 77558761, 155117521, 300540196, 601080391, 1166803111
OFFSET
0,1
COMMENTS
With the exception of the initial 2s, these are numbers such that if Pascal's triangle is written in base a(n) - 1, the first n - 2 rows give the digits of the powers of a(n) written in that base. This is most often noticed for the powers of 11 since of course we use decimal. -Alonso del Arte,Jul 10 2011
LINKS
FORMULA
G.f.: -((2*x-1)*(3*x-1) +(x-1)*sqrt(1 - 4*x^2))/(2*x*(x-1)*(2*x-1)). -Thomas Baruchel,Jun 26 2018
0 = 1 +a(n)*(-2 +4*a(n+1) -2*a(n+2)) +a(n+1)*(-1 -2*a(n+1) +a(n+2)) +a(n+2) for all n>=0. -Michael Somos,Jun 30 2018
MAPLE
a:= proc(n) option remember; `if`(n<3, [2, 2, 3][n+1],
((n^2+n-4)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2)
-4*(n-1)*(n-2)*a(n-3)) / ((n+1)*(n-2)))
end:
seq(a(n), n=0..50); #Alois P. Heinz,Mar 03 2014
MATHEMATICA
a[n_]:= a[n] = (4(n-1) a[n-2] + 2a[n-1] - 3n + 3)/(n+1); a[0] = a[1] = 2; Array[a, 50, 0] (*Jean-François Alcover,Jan 19 2017 *)
Table[Binomial[n, Floor[n/2]], {n, 0, 40}]+1 (*Harvey P. Dale,Jan 20 2019 *)
PROG
(PARI) a(n)=binomial(n, n\2)+1 \\Charles R Greathouse IV,Feb 05 2013
KEYWORD
nonn
AUTHOR
N. J. A. Sloane,Dec 18 1999
STATUS
approved