OFFSET
1,4
COMMENTS
Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). -Reinhard Zumkeller,Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). -Daniel Forgues,Mar 06 2009
A052410(n)^a(n) = n. -Reinhard Zumkeller,Apr 06 2014
LINKS
Daniel Forgues,Table of n, a(n) for n = 1..100000
Eric Weisstein's World of Mathematics,Power
Eric Weisstein's World of Mathematics,Perfect Power
FORMULA
EXAMPLE
n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <>A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
MAPLE
# See link.
#
a:= n-> igcd(map(i-> i[2], ifactors(n)[2])[]):
seq(a(n), n=1..120); #Alois P. Heinz,Oct 20 2019
MATHEMATICA
Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (*Ray Chandler,Jan 24 2006 *)
PROG
(Haskell)
a052409 1 = 0
a052409 n = foldr1 gcd $ a124010_row n
--Reinhard Zumkeller,May 26 2012
(PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\Charles R Greathouse IV,Oct 30 2012
(Scheme) (define (A052409n) (if (= 1 n) 0 (gcd (A067029n) (A052409(A028234n)))));;Antti Karttunen,Aug 07 2017
(Python)
from math import gcd
from sympy import factorint
defA052409(n): return gcd(*factorint(n).values()) #Chai Wah Wu,Aug 31 2022
CROSSREFS
Apart from the initial term essentially the same asA253641.
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms fromLabos Elemer,Jun 17 2002
STATUS
approved