login
A052409
a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).
125
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). -Reinhard Zumkeller,Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). -Daniel Forgues,Mar 06 2009
A052410(n)^a(n) = n. -Reinhard Zumkeller,Apr 06 2014
Positions of 1's areA007916.Smallest base is given byA052410.-Gus Wiseman,Jun 09 2020
FORMULA
a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). -Antti Karttunen,Aug 07 2017
EXAMPLE
n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <>A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
MAPLE
# See link.
#
a:= n-> igcd(map(i-> i[2], ifactors(n)[2])[]):
seq(a(n), n=1..120); #Alois P. Heinz,Oct 20 2019
MATHEMATICA
Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (*Ray Chandler,Jan 24 2006 *)
PROG
(Haskell)
a052409 1 = 0
a052409 n = foldr1 gcd $ a124010_row n
--Reinhard Zumkeller,May 26 2012
(PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\Charles R Greathouse IV,Oct 30 2012
(Scheme) (define (A052409n) (if (= 1 n) 0 (gcd (A067029n) (A052409(A028234n)))));;Antti Karttunen,Aug 07 2017
(Python)
from math import gcd
from sympy import factorint
defA052409(n): return gcd(*factorint(n).values()) #Chai Wah Wu,Aug 31 2022
CROSSREFS
Apart from the initial term essentially the same asA253641.
Differs fromA051904for the first time at n=72, where a(72) = 1, whileA051904(72) = 2.
Differs fromA158378for the first time at n=10800, where a(10800) = 1, whileA158378(10800) = 2.
KEYWORD
nonn
EXTENSIONS
More terms fromLabos Elemer,Jun 17 2002
STATUS
approved