login
A060034
Number of partitions of n such that all parts are neither relatively prime (cf.A000837) nor are they periodic with each part occurring the same number of times (cf.A024994).
0
0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 4, 0, 9, 3, 12, 0, 22, 0, 28, 9, 43, 0, 63, 3, 82, 19, 107, 0, 170, 0, 189, 43, 258, 12, 372, 0, 435, 82, 557, 0, 808, 0, 900, 162, 1150, 0, 1599, 9, 1836, 258, 2252, 0, 3111, 46, 3476, 435, 4308, 0, 5827, 0, 6501, 727, 7917, 85
OFFSET
1,10
FORMULA
a(n) =A000041(n) - (A000837(n) +A024994(n))
EXAMPLE
a(15) = 3 because partitions 6+3+3+3, 6+6+3 and 9+3+3 satisfy the description andA000041(15) - (A000837(15) +A024994(15)) = 176 - (167 + 6) = 3.
MATHEMATICA
A000837[n_]:= Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}];A024994[n_]:= Sum[ PartitionsQ[k], {k, Divisors[n] // Most}]; a[n_]:= PartitionsP[n] - (A000837[n] +A024994[n]); Table[a[n], {n, 1, 65}] (*Jean-François Alcover,Oct 03 2013 *)
KEYWORD
easy,nonn
AUTHOR
Alford Arnold,Mar 16 2001
EXTENSIONS
More terms fromNaohiro Nomoto,Mar 01 2002
STATUS
approved