login
A060747
a(n) = 2*n - 1.
32
-1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151
OFFSET
0,3
COMMENTS
If you put n red balls and n blue balls in a bag and draw them one by one without replacement, the probability of never having drawn equal numbers of the two colors before the final ball is drawn is 1/a(n) unsigned.
abs(a(n)) = 2n - 1 + 2*0^n. It hasA048495as binomial transform. -Paul Barry,Jun 09 2003
For n >= 1, a(n) = numbers k such that arithmetic mean of the first k positive integers is integer.A040001(a(n)) = 1. SeeA145051andA040001.-Jaroslav Krizek,May 28 2010
FromJaroslav Krizek,May 28 2010: (Start)
For n >= 1, a(n) = corresponding values of antiharmonic means to numbers fromA016777(numbers k such that antiharmonic mean of the first k positive integers is integer).
a(n) =A000330(A016777(n)) /A000217(A016777(n)) =A146535(A016777(n)+1). (End)
FORMULA
a(n) =A005408(n)-2 =A005843(n)-1 = -A000984(n)/A002420(n) =A001477(n)+A023443(n).
G.f.: (3*x - 1)/(1 - x)^2.
Abs(a(n)) = Sum_{k=0..n} (A078008(k) mod 4). -Paul Barry,Mar 12 2004
E.g.f.: exp(x)*(2*x-1). -Paul Barry,Mar 31 2007
a(n) = 2*a(n-1) - a(n-2); a(0)=-1, a(1)=1. -Philippe Deléham,Nov 03 2008
a(n) = 4*n - a(n-1) - 4 for n>0, with a(0)=-1. -Vincenzo Librandi,Aug 07 2010
MATHEMATICA
Table[2*n - 1, {n, 0, 200}] (*Vladimir Joseph Stephan Orlovsky,Feb 16 2012 *)
LinearRecurrence[{2, -1}, {-1, 1}, 80] (*Harvey P. Dale,Mar 27 2020 *)
PROG
(Haskell)
a060747 = subtract 1. (* 2)
a060747_list = [-1, 1..] --Reinhard Zumkeller,Jul 05 2015
--Reinhard Zumkeller,Jul 05 2015
(PARI) a(n)=2*n-1 \\Charles R Greathouse IV,Sep 24 2015
KEYWORD
sign,easy
AUTHOR
Henry Bottomley,Apr 26 2001
STATUS
approved