login
A088827
Even numbers with odd abundance: even squares or two times squares.
10
2, 4, 8, 16, 18, 32, 36, 50, 64, 72, 98, 100, 128, 144, 162, 196, 200, 242, 256, 288, 324, 338, 392, 400, 450, 484, 512, 576, 578, 648, 676, 722, 784, 800, 882, 900, 968, 1024, 1058, 1152, 1156, 1250, 1296, 1352, 1444, 1458, 1568, 1600, 1682, 1764, 1800, 1922
OFFSET
1,1
COMMENTS
Sigma(k)-2k is odd means that sigma(k) is also odd.
Odd numbers with odd abundance are inA016754.Odd numbers with even abundance are inA088828.Even numbers with even abundance are inA088829.
LINKS
FORMULA
Conjecture: a(n) = ((2*r) + 1)^2 * 2^(c+1) where r and c are the corresponding row and column of n in the table format ofA191432,where the first row and column are 0. -John Tyler Rascoe,Jul 12 2022
Sum_{n>=1} 1/a(n) = Pi^2/8 (A111003). -Amiram Eldar,Jul 09 2023
EXAMPLE
FromMichael De Vlieger,May 14 2017: (Start)
4 is a term since it is even and the sum of its divisors {1,2,4} = 7 - 2(4) = -1 is odd. It is an even square.
18 is a term since it is even and the sum of its divisors {1,2,3,6,9,18} = 39 - 2(18) = 3 is odd. It is 2 times a square, i.e., 2(9). (End)
MATHEMATICA
Do[s=DivisorSigma[1, n]-2*n; If[OddQ[s]&&!OddQ[n], Print[{n, s}]], {n, 1, 1000}]
(* Second program: *)
Select[Range[2, 2000, 2], OddQ[DivisorSigma[1, #] - 2 #] &] (*Michael De Vlieger,May 14 2017 *)
PROG
(Python)
from itertools import count, islice
from sympy.ntheory.primetest import is_square
defA088827_gen(startvalue=2): # generator of terms >= startvalue
return filter(lambda n:is_square(n) or is_square(n>>1), count(max(startvalue+(startvalue&1), 2), 2))
A088827_list = list(islice(A088827_gen(), 30)) #Chai Wah Wu,Jul 06 2023
KEYWORD
nonn,easy
AUTHOR
Labos Elemer,Oct 28 2003
STATUS
approved