login
A097836
Chebyshev polynomials S(n,51).
5
1, 51, 2600, 132549, 6757399, 344494800, 17562477401, 895341852651, 45644872007800, 2326993130545149, 118631004785794799, 6047854250944989600, 308321935793408674801, 15718370871212897425251, 801328592496064360013000
OFFSET
0,2
COMMENTS
Used for all positive integer solutions of Pell equation x^2 - 53*y^2 = -4. SeeA097837withA097838.
a(n-1), with a(-1):= 0, and b(n):=A099368(n) give the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 53*(7*a(n-1))^2 = +4, n >= 0. -Wolfdieter Lang,Jun 27 2013
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh,Ellipse Chains and Associated Sequences,J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
R. Flórez, R. A. Higuita, and A. Mukherjee,Alternating Sums in the Hosoya Polynomial Triangle,Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
Tanya Khovanova,Recursive Sequences
FORMULA
a(n) = S(n, 51)=U(n, 51/2)= S(2*n+1, sqrt(53))/sqrt(53) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind,A049310.S(-1, x)= 0 = U(-1, x).
a(n) = 51*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=51.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap:= (51+7*sqrt(53))/2 and am:= (51-7*sqrt(53))/2 = 1/ap.
G.f.: 1/(1-51*x+x^2).
MATHEMATICA
LinearRecurrence[{51, -1}, {1, 51}, 30] (*G. C. Greubel,Jan 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(1-51*x+x^2)) \\G. C. Greubel,Jan 12 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-51*x+x^2) )); //G. C. Greubel,Jan 12 2019
(Sage) (1/(1-51*x+x^2)).series(x, 30).coefficients(x, sparse=False) #G. C. Greubel,Jan 12 2019
(GAP) a:=[1, 51];; for n in [2..30] do a[n]:=51*a[n-1]-a[n-2]; od; a; #G. C. Greubel,Jan 12 2019
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang,Sep 10 2004
STATUS
approved