login
A286350
a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=0, a(1)=a(2)=2, a(3)=3.
2
0, 2, 2, 3, 4, 7, 12, 20, 32, 51, 82, 133, 216, 350, 566, 915, 1480, 2395, 3876, 6272, 10148, 16419, 26566, 42985, 69552, 112538, 182090, 294627, 476716, 771343, 1248060, 2019404, 3267464, 5286867, 8554330, 13841197, 22395528, 36236726, 58632254, 94868979
OFFSET
0,2
COMMENTS
This is b(n) inA286311(n). As mentioned inA286311,the pairA286311(n) and, here a(n), are autosequences of the first kind.
FORMULA
a(n) =A286311(n) +A128834(n).
a(n) =A022086(n) -A286311(n).
a(n) = (A022086(n) +A128834(n))/2.
G.f.: x*(2 - 2*x + x^2) / ((1 - x + x^2)*(1 - x - x^2)). -Colin Barker,May 09 2017
MATHEMATICA
LinearRecurrence[{2, -1, 0, 1}, {0, 2, 2, 3}, 40] (* or *)
CoefficientList[Series[x (2 - 2 x + x^2)/((1 - x + x^2) (1 - x - x^2)), {x, 0, 39}], x] (*Michael De Vlieger,May 09 2017 *)
PROG
(PARI) concat(0, Vec(x*(2 - 2*x + x^2) / ((1 - x + x^2)*(1 - x - x^2)) + O(x^60))) \\Colin Barker,May 09 2017
(Magma) I:=[0, 2, 2, 3]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; //G. C. Greubel,Jan 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz,May 08 2017
EXTENSIONS
More terms fromColin Barker,May 09 2017
STATUS
approved