login

Revision History forA063496

(Bold, blue-underlined text is anaddition; faded, red-underlined text is adeletion.)

Showing entries 1-10 |older changes
a(n) = (2*n - 1)*(8*n^2 - 8*n + 3)/3.
(history; published version)
#72byMichael De Vliegerat Fri Mar 15 07:26:03 EDT 2024
STATUS

reviewed

approved

#71byJoerg Arndtat Fri Mar 15 02:15:09 EDT 2024
STATUS

proposed

reviewed

#70byJon E. Schoenfieldat Fri Mar 15 00:48:50 EDT 2024
STATUS

editing

proposed

#69byJon E. Schoenfieldat Fri Mar 15 00:48:45 EDT 2024
FORMULA

Partial sums ofA010006.So this sequence is the crystal ball sequence for the C_3 lattice - row 3 ofA142992.The lattice C_3 consists of all integer lattice points v = (a,b,c) in Z^3 such that a + b + c is even, equipped with the taxicab type norm ||v|| =(1/2)* (|a| + |b| + |c|).

Sum_{k = 1..n+1} 1/(k*a(k)*a(k+1)) = 1/(19 - 3/(27 - 60/(43 - 315/(67 -... -n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*3^2))))).

STATUS

proposed

editing

#68byMichel Marcusat Thu Mar 14 13:22:47 EDT 2024
STATUS

editing

proposed

#67byMichel Marcusat Thu Mar 14 13:22:43 EDT 2024
LINKS

R. Bacher, P. de la Harpe and B. Venkov, <a href= "http://archive.numdam.org/ARCHIVE/AIF/AIF_1999__49_3/AIF_1999__49_3_727_0/AIF_1999__49_3_727_0.pdf ">SeriesSériesde croissance etseriessériesd'Ehrhartassocieesassociéesauxreseauxréseauxde racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.

STATUS

proposed

editing

#66byPeter Balaat Thu Mar 14 09:54:55 EDT 2024
STATUS

editing

proposed

#65byPeter Balaat Wed Mar 13 06:59:36 EDT 2024
FORMULA

E.g.f.: exp(x)*(1 + 18*x + 48*x^2/2! + 32*x^3/3!). Note that -T(6, i*sqrt(x)) = 1 + 18*x + 48*x^2 + 32*x^3, where T(n, x) denotes then-thChebyshev polynomial of the first kind. SeeA008310.(End)

#64byPeter Balaat Wed Mar 13 06:57:50 EDT 2024
FORMULA

E.g.f.: exp(x)*(1 + 18*x + 48*x^2/2! + 32*x^3/3!).Note that -T(6, i*sqrt(x)) = 1 + 18*x + 48*x^2 + 32*x^3, where T(n, x) denotes the Chebyshev polynomial of the first kind. SeeA008310.(End)

#63byPeter Balaat Mon Mar 11 09:31:33 EDT 2024
FORMULA

FromPeter Bala,Mar 11 2024: (Start)

Sum_{k = 1..n+1} 1/(k*a(k)*a(k+1))= 1/(19 - 3/(27 - 60/(43 - 315/(67 -... -n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*3^2 ))))).-_PeterBala_,Mar112024

E.g.f.: exp(x)*(1 + 18*x + 48*x^2/2! + 32*x^3/3!).Note that -T(6, i*sqrt(x)) = 1 + 18*x + 48*x^2 + 32*x^3, where T(n, x) denotes the Chebyshev polynomial of the first kind. SeeA008310.(End)