Displaying 1-10 of 22 results found.
Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.
+10
293
1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
COMMENTS
The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl,Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function ( A000594). - Benoit Cloitre,May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic,Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0,...]; Narayana transform ( A001263) of [1, 8, 0, 0, 0,...]. - Gary W. Adamson,Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393.Numbers 8k+1 are squares iff k is a triangular number from A000217.And squares have form 4n(n+1)+1. - Artur Jasinski,Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25,... and the line from 9, in the direction 9, 49,..., in the square spiral whose vertices are the squares A000290.- Omar E. Pol,May 24 2008
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828.Even numbers with odd abundance are in A088827.Even numbers with even abundance are in A088829.- Jaroslav Krizek,May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509.- Alexander R. Povolotsky,Oct 12 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler,Mar 19 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler,Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c ( A020882) and respective even leg b ( A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier,Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot,May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus,Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price,May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev,Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh,Dec 25 2016
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 ( A344332). - Bernard Schott,Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott,Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742(see Comment of Jan 26 2018). - Bernard Schott,Feb 24 2023
REFERENCES
L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.
FORMULA
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach,Jul 12 2013
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 ( A003881). (End)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 -... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 -... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 -... ))))).
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 +... + (4*n^2 - 1)/(8 +... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813.(End)
PROG
(Haskell)
a016754 n = a016754_list!! n
a016754_list = scanl (+) 1 $ tail a008590_list
(Python)
CROSSREFS
Cf. A000290, A000384, A001263, A001539, A001844, A003881, A005408, A006752, A014105, A016742, A016802, A016814, A016826, A016838, A033996, A046092, A060300, A138393, A167661, A167700.
Centered cube numbers: n^3 + (n+1)^3.
(Formerly M4616)
+10
112
1, 9, 35, 91, 189, 341, 559, 855, 1241, 1729, 2331, 3059, 3925, 4941, 6119, 7471, 9009, 10745, 12691, 14859, 17261, 19909, 22815, 25991, 29449, 33201, 37259, 41635, 46341, 51389, 56791, 62559, 68705, 75241, 82179, 89531, 97309, 105525, 114191, 123319, 132921
COMMENTS
Write the natural numbers in groups: 1; 2,3,4; 5,6,7,8,9; 10,11,12,13,14,15,16;..... and add the groups, i.e., a(n) = Sum_{j=n^2-2(n-1)..n^2} j. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Sep 05 2001
The numbers 1, 9, 35, 91, etc. are divisible by 1, 3, 5, 7, etc. Therefore there are no prime numbers in this list. 9 is divisible by 3 and every third number after 9 is also divisible by 3. 35 is divisible by 5 and 7 and every fifth number after 35 is also divisible by 5 and every seventh number after 35 is also divisible by 7. This pattern continues indefinitely. - Howard Berman (howard_berman(AT)hotmail.com), Nov 07 2008
n^3 + (n+1)^3 = (2n+1)*(n^2+n+1), hence all terms are composite. - Zak Seidov,Feb 08 2011
This is the order of an n-ball centered at a node in the Kronecker product (or direct product) of three cycles, each of whose lengths is at least 2n+2. - Pranava K. Jha,Oct 10 2011
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f.: (1 + 8*x + 9*x^2 + 2*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
MATHEMATICA
CoefficientList[Series[(1 + 5 x + 5 x^2 + x^3)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi,Dec 16 2015 *)
PROG
(Python)
A005898_list, m = [], [12, -6, 2, 1]
for _ in range(10**2):
for i in range(3):
CROSSREFS
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267;crs: A299268, A299269;fcu: A005901, A005902;fee: A299259, A299265;flu-e: A299272, A299273;fst: A299258, A299264;hal: A299274, A299275;hcp: A007899, A007202;hex: A005897, A005898;kag: A299256, A299262;lta: A008137, A299276;pcu: A005899, A001845;pcu-i: A299277, A299278;reo: A299279, A299280;reo-e: A299281, A299282;rho: A008137, A299276;sod: A005893, A005894;sve: A299255, A299261;svh: A299283, A299284;svj: A299254, A299260;svk: A010001, A063489;tca: A299285, A299286;tcd: A299287, A299288;tfs: A005899, A001845;tsi: A299289, A299290;ttw: A299257, A299263;ubt: A299291, A299292;bnn: A007899, A007202.See the Proserpio link in A299266for overview.
Centered octahedral numbers (crystal ball sequence for cubic lattice).
(Formerly M4384 N1844)
+10
93
1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
COMMENTS
Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic,Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0,...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609.- Gary W. Adamson,Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic,Jan 26 2010
a(n) = D(3,n) where D are the Delannoy numbers ( A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein,Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array ( A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288,a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan,Jan 02 2023
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Kreweras, Sur les hiérarchies de segments,Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
FORMULA
G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffein his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale,Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland,Sep 05 2014
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia,Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala,Mar 21 2024
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* Harvey P. Dale,Jun 05 2013 *)
CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein,Sep 27 2017 *)
PROG
(Haskell)
a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3
CROSSREFS
Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267;crs: A299268, A299269;fcu: A005901, A005902;fee: A299259, A299265;flu-e: A299272, A299273;fst: A299258, A299264;hal: A299274, A299275;hcp: A007899, A007202;hex: A005897, A005898;kag: A299256, A299262;lta: A008137, A299276;pcu: A005899, A001845;pcu-i: A299277, A299278;reo: A299279, A299280;reo-e: A299281, A299282;rho: A008137, A299276;sod: A005893, A005894;sve: A299255, A299261;svh: A299283, A299284;svj: A299254, A299260;svk: A010001, A063489;tca: A299285, A299286;tcd: A299287, A299288;tfs: A005899, A001845;tsi: A299289, A299290;ttw: A299257, A299263;ubt: A299291, A299292;bnn: A007899, A007202.See the Proserpio link in A299266for overview.
Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
(Formerly M4898)
+10
86
1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171, 162133, 175825, 190267, 205479
COMMENTS
Called "magic numbers" in some chemical contexts.
Equals binomial transform of [1, 12, 30, 20, 0, 0, 0,...]. - Gary W. Adamson,Aug 01 2008
Crystal ball sequence for A_3 lattice. - Michael Somos,Jun 03 2012
REFERENCES
H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 ( pdf).
D. R. Herrick, Home Page(displays these numbers as sizes of clusters in chemistry)
FORMULA
a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
(End)
EXAMPLE
a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - Gary W. Adamson,Aug 01 2008
G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 +...
MAPLE
A005902:= n -> (2*n+1)*(5*n^2+5*n+3)/3;
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 13, 55, 147}, 50] (* Harvey P. Dale,Oct 08 2015 *)
CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* Indranil Ghosh,Apr 08 2017 *)
PROG
(PARI) {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* Michael Somos,Jun 03 2012 */
(PARI) x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ Indranil Ghosh,Apr 08 2017
(Magma) [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // G. C. Greubel,Dec 01 2017
(Python)
def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267;crs: A299268, A299269;fcu: A005901, A005902;fee: A299259, A299265;flu-e: A299272, A299273;fst: A299258, A299264;hal: A299274, A299275;hcp: A007899, A007202;hex: A005897, A005898;kag: A299256, A299262;lta: A008137, A299276;pcu: A005899, A001845;pcu-i: A299277, A299278;reo: A299279, A299280;reo-e: A299281, A299282;rho: A008137, A299276;sod: A005893, A005894;sve: A299255, A299261;svh: A299283, A299284;svj: A299254, A299260;svk: A010001, A063489;tca: A299285, A299286;tcd: A299287, A299288;tfs: A005899, A001845;tsi: A299289, A299290;ttw: A299257, A299263;ubt: A299291, A299292;bnn: A007899, A007202.See the Proserpio link in A299266for overview.
Centered tetrahedral numbers.
(Formerly M3850)
+10
71
1, 5, 15, 35, 69, 121, 195, 295, 425, 589, 791, 1035, 1325, 1665, 2059, 2511, 3025, 3605, 4255, 4979, 5781, 6665, 7635, 8695, 9849, 11101, 12455, 13915, 15485, 17169, 18971, 20895, 22945, 25125, 27439, 29891, 32485, 35225, 38115
COMMENTS
Binomial transform of (1,4,6,4,0,0,0,...). - Paul Barry,Jul 01 2003
If X is an n-set and Y a fixed 4-subset of X then a(n-4) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic,Jul 30 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = (2*n + 1)*(n^2 + n + 3)/3.
G.f.: (1+x)*(1+x^2)/(1-x)^4.
a(n) = C(n, 0) + 4*C(n, 1) + 6*C(n, 2) + 4*C(n, 3). - Paul Barry,Jul 01 2003
a(n) = binomial(n+3,n) + binomial(n+2,n-1) + binomial(n+1,n-2) + binomial(n,n-3). (modified by G. C. Greubel,Nov 30 2017)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=5, a(2)=15, a(3)=35. - Harvey P. Dale,Nov 03 2011
E.g.f.: (3 + 12*x + 9*x^2 + 2*x^3)*exp(x)/3. - G. C. Greubel,Nov 30 2017
MATHEMATICA
Table[(2n+1)(n^2+n+3)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 15, 35}, 40] (* Harvey P. Dale,Nov 03 2011 *)
PROG
(Magma) [(2*n+1)*(n^2+n+3)/3: n in [0..30]]; // G. C. Greubel,Nov 30 2017
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267;crs: A299268, A299269;fcu: A005901, A005902;fee: A299259, A299265;flu-e: A299272, A299273;fst: A299258, A299264;hal: A299274, A299275;hcp: A007899, A007202;hex: A005897, A005898;kag: A299256, A299262;lta: A008137, A299276;pcu: A005899, A001845;pcu-i: A299277, A299278;reo: A299279, A299280;reo-e: A299281, A299282;rho: A008137, A299276;sod: A005893, A005894;sve: A299255, A299261;svh: A299283, A299284;svj: A299254, A299260;svk: A010001, A063489;tca: A299285, A299286;tcd: A299287, A299288;tfs: A005899, A001845;tsi: A299289, A299290;ttw: A299257, A299263;ubt: A299291, A299292;bnn: A007899, A007202.See the Proserpio link in A299266for overview.
a(n) = (2*n-1)*(5*n^2-5*n+6)/6.
+10
65
1, 8, 30, 77, 159, 286, 468, 715, 1037, 1444, 1946, 2553, 3275, 4122, 5104, 6231, 7513, 8960, 10582, 12389, 14391, 16598, 19020, 21667, 24549, 27676, 31058, 34705, 38627, 42834, 47336, 52143, 57265, 62712, 68494, 74621, 81103, 87950
FORMULA
G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^4. - Colin Barker,Mar 02 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), with a(1)=1, a(2)=8, a(3)=30, a(4)=77. - Harvey P. Dale,Aug 20 2012
E.g.f.: (-6 + 12*x + 15*x^2 + 10*x^3)*exp(x)/6 + 1. - G. C. Greubel,Dec 01 2017
MATHEMATICA
Table[(2n-1)(5n^2-5n+6)/6, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 30, 77}, 40] (* Harvey P. Dale,Aug 20 2012 *)
PROG
(PARI) { for (n=1, 1000, write( "b063489.txt", n, "", (2*n - 1)*(5*n^2 - 5*n + 6)/6) ) } \\ Harry J. Smith,Aug 23 2009
(Magma) [(2*n-1)*(5*n^2-5*n+6)/6: n in [1..30]]; // G. C. Greubel,Dec 01 2017
(PARI) x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 15*x^2 + 10*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel,Dec 01 2017
CROSSREFS
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267;crs: A299268, A299269;fcu: A005901, A005902;fee: A299259, A299265;flu-e: A299272, A299273;fst: A299258, A299264;hal: A299274, A299275;hcp: A007899, A007202;hex: A005897, A005898;kag: A299256, A299262;lta: A008137, A299276;pcu: A005899, A001845;pcu-i: A299277, A299278;reo: A299279, A299280;reo-e: A299281, A299282;rho: A008137, A299276;sod: A005893, A005894;sve: A299255, A299261;svh: A299283, A299284;svj: A299254, A299260;svk: A010001, A063489;tca: A299285, A299286;tcd: A299287, A299288;tfs: A005899, A001845;tsi: A299289, A299290;ttw: A299257, A299263;ubt: A299291, A299292;bnn: A007899, A007202.See the Proserpio link in A299266for overview.
Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
(Formerly M4968)
+10
60
1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
COMMENTS
Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk,Aug 11 2006
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic,Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003.A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier,Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot,Jun 25 2013
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49,...]; [3, 5, 15, 29, 47,...]; [9, 11, 13, 27, 45,...]; [19, 21, 23, 25, 43,...]; [33, 35, 37, 39, 41,...]. - J. M. Bergot,Jul 16 2013 [This contribution was moved here from A047926by Petros Hadjicostas,Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332.- Bernard Schott,Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman,Jan 21 2024
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffein his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic,May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31),... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry,Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0,...], if the offset is 0. - Gary W. Adamson,Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16* A002817(n-1) for n > 1. - Bruno Berselli,Mar 04 2011
MATHEMATICA
#[[2]]-#[[1]]&/@Partition[Range[0, 40]^4, 2, 1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale,Feb 07 2015 *)
PROG
(Haskell)
a005917 n = a005917_list!! (n-1)
a005917_list = map sum $ f 1 [1, 3..] where
f x ws = us: f (x + 2) vs where (us, vs) = splitAt x ws
(Python)
A005917_list, m = [], [24, -12, 2, 1]
for _ in range(10**2):
for i in range(3):
CROSSREFS
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A063493, A063494, A063495, A063496.
a(n) = (2*n - 1)*(8*n^2 - 8*n + 3)/3.
+10
48
1, 19, 85, 231, 489, 891, 1469, 2255, 3281, 4579, 6181, 8119, 10425, 13131, 16269, 19871, 23969, 28595, 33781, 39559, 45961, 53019, 60765, 69231, 78449, 88451, 99269, 110935, 123481, 136939, 151341, 166719, 183105, 200531, 219029
COMMENTS
Number of potential flows in a 2 X 2 matrix with integer velocities in -n..n, i.e., number of 2 X 2 matrices with adjacent elements differing by no more than n, counting matrices differing by a constant only once. - R. H. Hardin,Feb 27 2002
Number of ordered quadruples (a,b,c,d), -(n-1) <= a,b,c,d <= n-1, such that a+b+c+d = 0. - Benoit Cloitre,Jun 14 2003
If Y and Z are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic,Oct 28 2007
Equals binomial transform of [1, 18, 48, 32, 0, 0, 0,...]. - Gary W. Adamson,Jul 19 2008
FORMULA
The following remarks about the C_3 lattice assume the sequence offset is 0.
Partial sums of A010006.So this sequence is the crystal ball sequence for the C_3 lattice - row 3 of A142992.The lattice C_3 consists of all integer lattice points v = (a,b,c) in Z^3 such that a + b + c is even, equipped with the taxicab type norm ||v|| = (1/2) * (|a| + |b| + |c|).
The crystal ball sequence of C_3 gives the number of lattice points v in C_3 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
For example, a(1) = 19 because the origin has norm 0 and the 18 lattice points in Z^3 of norm 1 (as defined above) are +-(2,0,0), +-(0,2,0), +-(0,0,2), +-(1,1,0), +-(1,0,1), +-(0,1,1), +-(1,-1,0), +-(1,0,-1) and +-(0,1,-1). These 18 vectors form a root system of type C_3.
O.g.f.: x*(1 + 15*x + 15*x^2 + x^3)/(1 - x)^4 = x/(1 - x) * T(3, (1 + x)/(1 - x)), where T(n, x) denotes the Chebyshev polynomial of the first kind.
2*log(2) = 4/3 + Sum_{n >= 1} 1/(n*a(n)*a(n+1)). (End)
a(n+1) = (1/Pi) * Integral_{x=0..Pi} (sin((n+1/2)*x)/sin(x/2))^4. - Yalcin Aktar,Nov 02 2011, corrected by R. J. Mathar,Dec 01 2011
G.f.: x*(1 + 15*x + 15*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-3 + 6*x + 24*x^2 + 16*x^3)*exp(x)/3 + 1. (End)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k+1)) = 1/(19 - 3/(27 - 60/(43 - 315/(67 -... -n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*3^2))))).
E.g.f.: exp(x)*(1 + 18*x + 48*x^2/2! + 32*x^3/3!). Note that -T(6, i*sqrt(x)) = 1 + 18*x + 48*x^2 + 32*x^3, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310.(End)
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 19, 85, 231}, 30] (* G. C. Greubel,Dec 01 2017 *)
PROG
(PARI) { for (n=1, 1000, write( "b063496.txt", n, "", (2*n - 1)*(8*n^2 - 8*n + 3)/3) ) } \\ Harry J. Smith,Aug 23 2009
(PARI) x='x+O('x^30); Vec(serlaplace((-3+6*x+24*x^2+16*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel,Dec 01 2017
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
a(n) = (2*n - 1)*(7*n^2 - 7*n + 6)/6.
+10
22
1, 10, 40, 105, 219, 396, 650, 995, 1445, 2014, 2716, 3565, 4575, 5760, 7134, 8711, 10505, 12530, 14800, 17329, 20131, 23220, 26610, 30315, 34349, 38726, 43460, 48565, 54055, 59944, 66246, 72975, 80145, 87770, 95864, 104441, 113515
COMMENTS
a(n) is also the sum of terms that are in the n-th finite row and in the n-th finite column of the square [1,n]x[1,n] of the natural number array A000027;e.g., the [1,3]x[1,3] square is
1..3..6
2..5..9
4..8..13,
so that a(1) = 1, a(2) = 2 + 3 + 5 = 10, a(3) = 4 + 6 + 8 + 9 + 13 = 40.
Hence the partial sums give A185505.(End)
FORMULA
G.f.: x*(1+x)*(1+5*x+x^2)/(1-x)^4. - Colin Barker,Mar 02 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (-6 + 12*x + 21*x^2 + 14*x^3)*exp(x)/6 + 1. (End)
MATHEMATICA
Table[(2*n-1)*(7*n^2-7*n+6)/6, {n, 1, 50}] (* or *) LinearRecurrenc[{4, -6, 4, -1}, {1, 10, 40, 105}, 50] (* G. C. Greubel,Dec 01 2017 *)
PROG
(PARI) { for (n=1, 1000, write( "b063490.txt", n, "", (2*n - 1)*(7*n^2 - 7*n + 6)/6) ) } \\ Harry J. Smith,Aug 23 2009
(PARI) x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 21*x^2 + 14*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel,Dec 01 2017
(Magma) [(2*n-1)*(7*n^2-7*n+6)/6: n in [1..30]]; // G. C. Greubel,Dec 01 2017
CROSSREFS
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
a(n) = (2*n-1)*(n^2 -n +2)/2.
+10
21
1, 6, 20, 49, 99, 176, 286, 435, 629, 874, 1176, 1541, 1975, 2484, 3074, 3751, 4521, 5390, 6364, 7449, 8651, 9976, 11430, 13019, 14749, 16626, 18656, 20845, 23199, 25724, 28426, 31311, 34385, 37654, 41124, 44801, 48691, 52800, 57134
COMMENTS
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic,Sep 08 2007
FORMULA
E.g.f.: (-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1. - G. C. Greubel,Dec 01 2017
MATHEMATICA
Table[(2 n - 1) (n^2 - n + 2)/2, {n, 1, 40}] (* Bruno Berselli,Oct 14 2016 *)
LinearRecurence[{4, -6, 4, -1}, {1, 6, 20, 49}, 50] (* G. C. Greubel,Dec 01 2017 *)
PROG
(PARI) { for (n=1, 1000, write( "b063488.txt", n, "", (2*n - 1)*(n^2 - n + 2)/2) ) } \\ Harry J. Smith,Aug 23 2009
(PARI) x='x+O('x^30); Vec(serlaplace((-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel,Dec 01 2017
(Magma) [(2*n-1)*(n^2 -n +2)/2: n in [1..30]]; // G. C. Greubel,Dec 01 2017
CROSSREFS
1/12*t*n*(2*n^2 - 3*n + 1) + 2*n - 1 for t = 2, 4, 6,... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Search completed in 0.031 seconds
|