login
A008759
Expansion of (1+x^16)/(1-x)/(1-x^2)/(1-x^3).
1
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 31, 34, 39, 43, 48, 53, 59, 64, 71, 77, 84, 91, 99, 106, 115, 123, 132, 141, 151, 160, 171, 181, 192, 203, 215, 226, 239, 251, 264, 277, 291, 304, 319
OFFSET
0,3
MAPLE
seq(coeff(series((1+x^16)/((1-x)*(1-x^2)*(1-x^3)), x, n+1), x, n), n = 1.. 60); #G. C. Greubel,Aug 09 2019
MATHEMATICA
CoefficientList[Series[(1+x^16)/(1-x)/(1-x^2)/(1-x^3), {x, 0, 60}], x] (*Harvey P. Dale,Sep 19 2016 *)
Join[{1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14}, LinearRecurrence[{1, 1, 0, -1, -1, 1}, {16, 19, 21, 24, 27, 31}, 48]] (*G. C. Greubel,Aug 09 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^16)/((1-x)*(1-x^2)*(1-x^3))) \\G. C. Greubel,Aug 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^16)/((1-x)*(1-x^2)*(1-x^3)) )); //G. C. Greubel,Aug 09 2019
(Sage)
defA008759_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^16)/((1-x)*(1-x^2)*(1-x^3)) ).list()
A008759_list(60) #G. C. Greubel,Aug 09 2019
(GAP) a:=[16, 19, 21, 24, 27, 31];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; Concatenation([1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14], a); #G. C. Greubel,Aug 09 2019
KEYWORD
nonn
STATUS
approved