login
A031597
Numbers k such that the continued fraction for sqrt(k) has even period and if the last term of the periodic part is deleted the central term is 99.
1
9803, 9811, 9839, 9843, 9851, 9859, 9871, 9883, 9887, 9899, 9907, 9923, 9931, 9959, 9963, 9967, 9987, 9991, 10007, 10019, 10031, 10039, 10067, 10079, 10083, 10091, 10099, 10103, 10107, 10111, 10131, 10139, 10147, 10151, 10159, 10163, 10199, 39208
OFFSET
1,1
MATHEMATICA
ep99Q[n_]:=Module[{s=Sqrt[n], cf, len}, cf=If[IntegerQ[s], {1}, ContinuedFraction[s][[2]]]; len= Length[ cf]; EvenQ[len]&&cf[[len/2]]==99]; Select[Range[40000], ep99Q] (*Harvey P. Dale,May 07 2023 *)
PROG
(Python)
from __future__ import division
from sympy import continued_fraction_periodic
A031597_list = [n for n, s in ((i, continued_fraction_periodic(0, 1, i)[-1]) for i in range(1, 10**5)) if isinstance(s, list) and len(s) % 2 == 0 and s[len(s)//2-1] == 99] #Chai Wah Wu,Jun 10 2017
KEYWORD
nonn
EXTENSIONS
Definition corrected byHarvey P. Dale,May 07 2023
STATUS
approved