OFFSET
0,2
COMMENTS
For n>0, 30*a(n) is the sum of the ten distinct products of 2*n-1, 2*n+1, and 2*n+3. For example, when n = 1, we sum the ten distinct products of 1, 3, and 5: 1*1*1 + 1*1*3 + 1*1*5 + 1*3*3 + 1*3*5 + 1*5*5 + 3*3*3 + 3*3*5 + 3*5*5 + 5*5*5 = 330 = 30*11 = 30*a(1). -J. M. Bergot,Apr 06 2014
LINKS
Vincenzo Librandi,Table of n, a(n) for n = 0..1000
T. P. Martin,Shells of atoms,Phys. Reports, 273 (1996), 199-241, eq. (10).
Index entries for linear recurrences with constant coefficients,signature (4,-6,4,-1).
FORMULA
a(n) = 2*A050533(n) + 1. -N. J. A. Sloane,Sep 22 2004
G.f.: (1+7*x+7*x^2+x^3)/(1-x)^4. -Colin Barker,Mar 01 2012
G.f. for sequence with interpolated zeros: 1/(8*x)*sinh(8*arctanh(x)) = 1/(16*x)*( ((1 + x)/(1 - x))^4 - ((1 - x)/(1 + x))^4 ) = 1 + 11*x^2 + 45*x^4 + 119*x^6 +.... Cf.A019560.-Peter Bala,Apr 07 2017
E.g.f.: (3 + 30*x + 36*x^2 + 8*x^3)*exp(x)/3. -G. C. Greubel,Dec 01 2017
FromPeter Bala,Mar 26 2024: (Start)
12*a(n) = (2*n + 1)*(a(n + 1) - a(n - 1)).
MAPLE
MATHEMATICA
Table[(2*n + 1)*(4*n^2 + 4*n + 3)/3, {n, 0, 50}] (*David Nacin,Mar 01 2012 *)
PROG
(PARI) P(x, y, z) = x^3 + x^2*y + x^2*z + x*y^2 + x*y*z + x*z^2 + y^3 + y^2*z + y*z^2 + z^3;
a(n) = P(2*n-1, 2*n+1, 2*n+3)/30; \\Michel Marcus,Apr 22 2014
(Magma) [(2*n+1)*(4*n^2+4*n+3)/3: n in [0..50]] //Wesley Ivan Hurt,Apr 22 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane,Nov 07 2000
STATUS
approved