%I #8 Mar 12 2015 20:05:23
%S 1,5,26,2705,182925626,90480665686818032705,
%T 1497566518357295341574859610364164525225308765626,
%U 202921484489818231618925783073836307197468903511468883565202877543941162929513969280065556186031618952557010685032705
%N Ratios of the terms of A081088: a(n) = A081088(n+1)/A081088(n); involves the partial quotients of a series of continued fractions that sum to unity.
%C log(a(n+1))/log(a(n)) --> 1+sqrt(2). The 7th term has 49 digits, while the 8th term has 117 digits.
%F a(n) = A081090(n)^2 + 1.
%e a(4) = A081088(5)/A081088(4) = 703300/260 = 2705.
%Y Cf. A081086, A081088, A081090.
%K nonn
%O 1,2
%A _Hans Havermann_ and _Paul D. Hanna_, Mar 05 2003