OFFSET
1,1
COMMENTS
All such numbers k are prime.
Note that a(6) = 110503 corresponds to (36^110503 + 1)/37, which is only a probable prime with 171975 digits.
The primes corresponding to the terms of this sequence have 1 as their last digit and an even number as their next-to-last digit. -Iain Fox,Dec 08 2017
LINKS
J. Brillhart et al.,Factorizations of b^n +- 1,Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
H. Dubner and T. Granlund,Primes of the Form (b^n+1)/(b+1),J. Integer Sequences, 3 (2000), #P00.2.7.
H. Lifchitz,Mersenne and Fermat primes field
Eric Weisstein's World of Mathematics,Repunit.
MATHEMATICA
Do[ p=Prime[n]; If[ PrimeQ[ (36^p + 1)/37 ], Print[p] ], {n, 1, 9592} ]
PROG
(PARI) is(n)=isprime((36^n+1)/37) \\Charles R Greathouse IV,Feb 17 2017
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Robert Price,Sep 15 2013
EXTENSIONS
a(6) = 110503 (posted by Lelio R. Paula on primenumbers.net) fromPaul Bourdelais,Dec 08 2017
a(7) fromPaul Bourdelais,Nov 03 2023
STATUS
approved