login

Revision History forA020541

(Bold, blue-underlined text is anaddition; faded, red-underlined text is adeletion.)

Showing entries 1-10 |older changes
a(n) = 4th Chebyshev polynomial (second kind) evaluated at 2^n.
(history; published version)
#23byCharles R Greathouse IVat Sat Jun 13 00:48:54 EDT 2015
LINKS

<a href= "/index/Rec#order_03" >Indextosequenceswithentriesforlinear recurrences with constant coefficients</a>, signature (21,-84,64).

Discussion
Sat Jun 13
00:48
OEIS Server:https://oeis.org/edit/global/2439
#22byN. J. A. Sloaneat Sun May 03 10:07:17 EDT 2015
STATUS

reviewed

approved

#21byJoerg Arndtat Sun May 03 09:55:19 EDT 2015
STATUS

proposed

reviewed

#20byMichel Marcusat Sun May 03 08:59:55 EDT 2015
STATUS

editing

proposed

#19byMichel Marcusat Sun May 03 08:59:43 EDT 2015
PROG

(PARI) a(n) = polchebyshev(4, 2, 2^n) \\Michel Marcus,May 03 2015

STATUS

proposed

editing

#18byColin Barkerat Sun May 03 08:33:39 EDT 2015
STATUS

editing

proposed

#17byColin Barkerat Sun May 03 08:32:46 EDT 2015
DATA

5, 209, 3905, 64769, 1045505, 16764929, 268386305, 4294770689, 68718690305, 1099508482049, 17592173461505, 281474926379009, 4503599426043905, 72057593232621569, 1152921501385621505,18446744060824649729,295147905127813218305,4722366482663486783489

LINKS

Colin Barker, <a href= "/A020541/b020541.txt ">Table of n, a(n) for n = 0..829</a>

<a href= "/index/Rec#order_03" >Index to sequences with linear recurrences with constant coefficients</a>, signature (21,-84,64).

FORMULA

a(n) = 21*a(n-1) - 84*a(n-2) + 64*a(n-3) for n>2. -Colin Barker,May 03 2015

G.f.: (64*x^2-104*x-5) / ((x-1)*(4*x-1)*(16*x-1)). -Colin Barker,May 03 2015

PROG

(PARI) Vec((64*x^2-104*x-5)/((x-1)*(4*x-1)*(16*x-1)) + O(x^100)) \\Colin Barker,May 03 2015

KEYWORD

nonn,easy

STATUS

approved

editing

#16byAlois P. Heinzat Sun Dec 28 15:53:43 EST 2014
STATUS

proposed

approved

#15byJon E. Schoenfieldat Sun Dec 28 15:50:04 EST 2014
STATUS

editing

proposed

#14byJon E. Schoenfieldat Sun Dec 28 15:50:01 EST 2014
NAME

a(n)=4th Chebyshev polynomial (second kind) evaluated atpowersof2^n.

FORMULA

a(n)=16^(n+1) - 3*4^(n+1) + 1.

MATHEMATICA

Table[ChebyshevU[4, 2^n], {n, 1, 40}][From_(*_Vladimir Joseph Stephan Orlovsky_, Nov 03 2009]*)

STATUS

approved

editing