login
A007152
Evolutionary trees of magnitude n.
(Formerly M3628)
2
1, 1, 4, 28, 301, 4466, 84974, 1974904, 54233540, 1718280152, 61695193880, 2475688513024, 109797950475448, 5333253012414224, 281576039542538368, 16055279332196218624, 983264280857581866112, 64369946360185677026048, 4485859513184032011682304, 331558482325457407154881024
OFFSET
1,3
REFERENCES
L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88. (Annotated scanned copy)
MAPLE
Q := proc(n)
option remember ;
if n <= 1 then
0;
else
A007151(n)-A007151(n-1) +(n-1)*procname(n-1) ; # eq (3.5)
%/2 ;
end if;
end proc:
A007152 := proc(n)
if n = 1 then
1;
else
A007151(n-1)+Q(n-1) ; # eq (3.9)
end if ;
end proc:
seq(A007152(n), n=1..20 ); # R. J. Mathar, Mar 19 2018
MATHEMATICA
m = 20;
A007151 = Rest[Range[0, m]! CoefficientList[ InverseSeries[ Series[(2x - E^x + 1)/(x + 1), {x, 0, m}], x], x]];
Q[n_] := Q[n] = If[n <= 1, 0, (1/2)(-A007151[[n - 1]] + A007151[[n]] + (n - 1) Q[n - 1])];
a[n_] := If[n == 1, 1, A007151[[n - 1]] + Q[n - 1]];
Array[a, m] (* Jean-François Alcover, Mar 30 2020, from Maple *)
CROSSREFS
Cf. A007151.
Sequence in context: A362475 A372738 A274043 * A345248 A295258 A177554
KEYWORD
nonn,easy
STATUS
approved