login
A007889
Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i<j<k are both (i,j) and (j,k) edges.
18
1, 1, 2, 7, 36, 246, 2104, 21652, 260720, 3598120, 56010096, 971055240, 18558391936, 387665694976, 8787898861568, 214868401724416, 5636819806209792, 157935254554567296, 4707152127520549120, 148704074888134683520, 4963548160096887021056, 174553183413968718996736
OFFSET
0,3
COMMENTS
Number of local binary search trees (i.e. labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) on n vertices. Example: a(3)=7 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i) and root 2 with left child 1 and right child 3. - Emeric Deutsch, Nov 24 2004
Number of regions of the Linial arrangement. - Ira M. Gessel, Nov 01 2023
REFERENCES
I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, 1997.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.41(a).
LINKS
C. Chauve, S. Dulucq and A. Rechnitzer, Enumerating alternating trees, J. Combin. Theory Ser. A 94 (2001), 142-151.
Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, arXiv:0906.3828, 2009-2010. [N. J. A. Sloane, Sep 27 2010]
G. Hetyei, Efron's coins and the Linial arrangement, arXiv preprint arXiv:1511.04482 [math.CO], 2015.
D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997 [Annotated scanned copy, with permission]
A. Postnikov, Intransitive Trees, J. Combin. Theory Ser. A 79 (1997), 360-366.
Richard P. Stanley, Hyperplane arrangements, interval orders, and trees, Proc. Natl. Acad. Sci. USA 93 (1996), 2620-2625.
FORMULA
a(n) = (1/((n+1)*2^n))*Sum_{k=1..n+1} C(n+1,k)*k^n.
E.g.f. A(x) satisfies: A(x) = exp( x*(1 + A(x))/2 ). E.g.f. A(x) equals the inverse function of 2*log(x)/(1+x). - Paul D. Hanna, Mar 29 2008
E.g.f.: -2/x*LambertW(-1/2*x*exp(1/2*x)). - Vladeta Jovovic, Mar 29 2008
From Vladeta Jovovic and Paul D. Hanna, Apr 03 2008: (Start)
Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(k+p)^(n-1).
Let A(x) = e.g.f. of A007889, B(x) = e.g.f. of A138860 where B(x) = exp( x*[B(x) + B(x)^2]/2 ); then B(x) = A(x*B(x)) = (1/x)*Series_Reversion(x/A(x)) and A(x) = B(x/A(x)) = x/Series_Reversion(x*B(x)). (End)
For n>=2, a(n)=Sum_{1,...,floor(n/2)}binomial(n-1, 2k-1)*k^(n-2). [Vladimir Shevelev, Mar 21 2010]
For n>0, a(n) = A088789(n+1)*2/(n+1). [Vaclav Kotesovec, Dec 26 2011]
MAPLE
f:= n->1/(2^n*(n+1))*add(binomial(n+1, k)*k^n, k=1..(n+1)): seq(f(n), n=0..19);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[-2/x LambertW[-1/2x Exp[x/2]], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Aug 12 2011 *)
Table[1/((n+1)2^n) Sum[Binomial[n+1, k]k^n, {k, n+1}], {n, 0, 20}] (* Harvey P. Dale, Apr 21 2012 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=exp(x*(1+A)/2 +x*O(x^n))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Mar 29 2008
(PARI) /* Coefficients of A(x)^p are given by: */ {a(n, p=1)=(1/2^n)*sum(k=0, n, binomial(n, k)*p*(k+p)^(n-1))} \\ Vladeta Jovovic and Paul D. Hanna, Apr 03 2008
(Sage)
def A007889(n) : return add(binomial(n, k)*(k+1)^(n-1) for k in (0..n))/2^n
for n in (0..19) : print(A007889(n)) # Peter Luschny, Feb 29 2012
CROSSREFS
Row sums of A029847.
Sequence in context: A029768 A180271 A167199 * A125033 A034430 A143805
KEYWORD
nonn,easy,nice
AUTHOR
Alexander Postnikov [ apost(AT)math.mit.edu ]
STATUS
approved