login
A016630
Decimal expansion of log(7).
13
1, 9, 4, 5, 9, 1, 0, 1, 4, 9, 0, 5, 5, 3, 1, 3, 3, 0, 5, 1, 0, 5, 3, 5, 2, 7, 4, 3, 4, 4, 3, 1, 7, 9, 7, 2, 9, 6, 3, 7, 0, 8, 4, 7, 2, 9, 5, 8, 1, 8, 6, 1, 1, 8, 8, 4, 5, 9, 3, 9, 0, 1, 4, 9, 9, 3, 7, 5, 7, 9, 8, 6, 2, 7, 5, 2, 0, 6, 9, 2, 6, 7, 7, 8, 7, 6, 5, 8, 4, 9, 8, 5, 8, 7, 8, 7, 1, 5, 2
OFFSET
1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
Uhler, Horace S.; Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17. Proc. Nat. Acad. Sci. U. S. A. 26, (1940). 205-212.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
From Peter Bala, Nov 11 2019: (Start)
log(7) = 2*sqrt(3)*Integral_{t = 0..sqrt(3)/3} (1 - t^4)/(1 + t^6) dt.
log(7) = (8/9)*Sum_{n >= 0} (12*n+11)/((6*n+1)*(6*n+5))*(-1/27)^n.
log(7) = 6*Sum_{n >= 0} ( 243/(12*n+1) - 27/(12*n+5) - 9/(12*n+7) + 1/(12*n+11) )*(1/729)^(n+1), a BPP-type formula. (End)
log(7) = 2*Sum_{n >= 1} 1/(n*P(n, 4/3)*P(n-1, 4/3)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(7) = 1.945910149055(27...), correct to 12 decimal places. - Peter Bala, Mar 18 2024
EXAMPLE
1.945910149055313305105352743443179729637084729581861188459390149937579...
MATHEMATICA
First[RealDigits[Log[7], 10, 100]] (* Paolo Xausa, Mar 21 2024 *)
PROG
(PARI) default(realprecision, 20080); x=log(7); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016630.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009
CROSSREFS
Cf. A016735 Continued fraction.
Sequence in context: A154900 A246546 A172197 * A374490 A213614 A099281
KEYWORD
nonn,cons
STATUS
approved