OFFSET
1,2
COMMENTS
log_3(4) is the Hausdorff dimension of the Koch snowflake.
A transcendental number. Also the Hausdorff dimension of 2D Cantor dust (for N-dimensional Cantor dust, see A102525). - Stanislav Sykora, Apr 19 2016
REFERENCES
Martin Gardner, Aha! Gotcha!, "A Pathological Curve", W. H. Freeman, NY, 1982, p. 77.
Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, University of Chicago Press, IL, 1983, p. 227.
Martin Gardner, The Colossal Book of Mathematics, W. W. Norton, NY, 2001, p. 322.
Nigel Lesmoir-Gordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, p. 28.
Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 177.
David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin Books, 1991, pp. 135-136.
LINKS
V. L. Almstrum, Visual Koch (Applet).
Robert Ferreol and Jacques Mandonnet, Koch's Curve.
Florida Atlantic University, Koch's Curve Applet.
P. Kernan, Koch Snowflake.
Kris, Koch Fractal,Koch Snowflake.
Aaron Krowne, PlanetMath.org, Koch curve.
M. L. Lapidus & E. P. J. Pearse, A tube formula for the Koch snowflake curve,with applications to complex dimensions, arXiv:math-ph/0412029, 2004-2005.
Simon Plouffe, log4/log3 to 10000 digits.
Larry Riddle, Koch Curve.
Alain Schuler, Chaos and fractal:the Koch's curve.
Gerard Villemin, Almanac of Numbers, Koch's Curve or Snowflake.
Eric Weisstein's World of Mathematics, Koch Snowflake.
Eric Weisstein's World of Mathematics, Cantor Dust.
Wikipedia, Koch curve.
FORMULA
Equals 2*A102525. - Stanislav Sykora, Apr 19 2016
EXAMPLE
log(4)/log(3) = 1.26185950714291487419905422868552170859917128...
MATHEMATICA
RealDigits[Log[3, 4], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2005 *)
PROG
(PARI) log(4)/log(3) \\ Altug Alkan, Apr 19 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Lekraj Beedassy, Jan 07 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jan 07 2005
STATUS
approved