OFFSET
0,1
COMMENTS
Since the continued fraction of 0.3867499707... is a sequence which is the fixed point of a substitution, this constant is transcendental.
LINKS
Claudio Bonanno, Carlo Carminati, Stefano Isola, and Giulio Tiozzo, Dynamics of continued fractions and kneading sequences of unimodal maps, arXiv:1012.2131 [math.DS], 2010-2012.
Julien Cassaigne, Limit values of the recurrence quotient of Sturmian sequences, Theoret. Comput. Sci., Vol. 218, No. 1 (1999), pp. 3-12.
MAPLE
## period-doubling routine (see A026465):
double:=proc(SS)
NEW:=[op(S), op(S)]:
if op(nops(NEW), NEW)=1
then NEW:=[seq(op(j, NEW), j=1..nops(NEW)-2), op(nops(NEW)-1, NEW)+1]:
else NEW:=[seq(op(j, NEW), j=1..nops(NEW)-1), op(nops(NEW)-1, NEW)-1, 1]:
fi:
end proc:
# 10 loops of the above routine generate the first 1365 terms of the sequence
S:=[2]:
for j from 1 to 10 do S:=double(S); od:
## transform the list S into a continued fraction:
Digits:=500;
with(numtheory);
q:=evalf(invcfrac([[0], S]));
## list of digits:
L:=[seq(floor(q*10**j) - 10*floor(q*10**(j-1)), j=1..200)];
MATHEMATICA
First[RealDigits[FromContinuedFraction[ThueMorse[Range[550]]] - 1, 10, 100]] (* Paolo Xausa, Apr 04 2024 *)
CROSSREFS
KEYWORD
AUTHOR
Carlo Carminati, Mar 03 2011
STATUS
approved