login
A002267
The 15 supersingular primes: primes dividing order of Monster simple group.
10
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71
OFFSET
1,1
COMMENTS
The supersingular primes are a subset of the Chen primes (A109611). - Paul Muljadi, Oct 12 2005
PROD(a(k): 1<=k<=15) = 1618964990108856390 = A174848(26). - Reinhard Zumkeller, Apr 02 2010
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
Alan W. Reid, Arithmetic hyperbolic manifolds, slides of a talk, Cornell University, June 2014,
G. K. Sankaran, A supersingular coincidence, arXiv:2009.11379 [math.NT], 2020.
J. G. Thompson, Finite groups and modular functions, Bulletin of the London Mathematical Society 11.3 (1979): 347-351. See page 350.
Eric Weisstein's World of Mathematics, Supersingular Prime
MATHEMATICA
FactorInteger[GroupOrder[MonsterGroupM[]]][[All, 1]] (* Jean-François Alcover, Oct 03 2016 *)
PROG
(PARI) A002267=vecextract(primes(20), 612351) \\ bitmask 2^20-1-213<<11: remove primes # 12, 14, 16, 18 and 19. - M. F. Hasler, Nov 10 2017
CROSSREFS
KEYWORD
nonn,fini,full,nice
STATUS
approved