login
A005213
Number of symmetric, reduced unit interval schemes with n+1 intervals (n>=1).
(Formerly M2254)
3
1, 0, 1, 1, 3, 2, 7, 6, 19, 16, 51, 45, 141, 126, 393, 357, 1107, 1016, 3139, 2907, 8953, 8350, 25653, 24068, 73789, 69576, 212941, 201643, 616227, 585690, 1787607, 1704510, 5196627, 4969152, 15134931, 14508939, 44152809, 42422022, 128996853
OFFSET
0,5
COMMENTS
Also, number of symmetric Dyck paths of semilength n with no peaks at odd level. E.g., a(4)=3 because we have UUUUDDDD, UUDDUUDD and UUDUDUDD, where U=(1,1) and D=(1,-1).
Sequence is obtained by alternating A002426 and A005717.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Phil Hanlon, Counting interval graphs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383-426.
FORMULA
G.f.: ((1+2*z-z^2)/sqrt(1-2*z^2-3*z^4)-1)/(2*z).
a(2*n) = A002426(n), a(2*n+1) = [A002426(n+1) - A002426(n)]/2, (A002426(n) are the central trinomial coefficients).
MAPLE
G:=((1+2*z-z^2)/sqrt(1-2*z^2-3*z^4)-1)/(2*z): Gser:=series(G, z=0, 40): 1, seq(coeff(Gser, z^n), n=1..38);
MATHEMATICA
CoefficientList[Series[((1 + 2*z - z^2)/Sqrt[1 - 2*z^2 - 3*z^4] - 1)/(2*z), {z, 0, 50}], z] (* G. C. Greubel, Mar 02 2017 *)
PROG
(PARI) x='x +O('x^50); Vec(((1+2*x-x^2)/sqrt(1-2*x^2-3*x^4)-1)/(2*x)) \\ G. C. Greubel, Mar 02 2017
CROSSREFS
Sequence in context: A364787 A082824 A088657 * A075701 A016603 A199183
KEYWORD
nonn
EXTENSIONS
Edited by Emeric Deutsch, Nov 21 2003
STATUS
approved