login
A027746
Irregular triangle in which first row is 1, n-th row (n>1) gives prime factors of n with repetition.
282
1, 2, 3, 2, 2, 5, 2, 3, 7, 2, 2, 2, 3, 3, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 2, 2, 2, 17, 2, 3, 3, 19, 2, 2, 5, 3, 7, 2, 11, 23, 2, 2, 2, 3, 5, 5, 2, 13, 3, 3, 3, 2, 2, 7, 29, 2, 3, 5, 31, 2, 2, 2, 2, 2, 3, 11, 2, 17, 5, 7, 2, 2, 3, 3, 37, 2, 19, 3, 13, 2, 2, 2, 5, 41, 2, 3, 7, 43, 2, 2, 11, 3, 3, 5
OFFSET
1,2
COMMENTS
n-th row has length A001222(n) (n>1).
LINKS
S. von Worley (?), Animated Factorization Diagrams, Oct. 2012.
Brent Yorgey, Factorization diagrams, The Math Less Traveled, Oct 05 2012.
FORMULA
Product_{k=1..A001222(n)} T(n,k) = n.
From Reinhard Zumkeller, Aug 27 2011: (Start)
A001414(n) = Sum_{k=1..A001222(n)} T(n,k), n>1;
A006530(n) = T(n,A001222(n)) = Max_{k=1..A001222(n)} T(n,k);
A020639(n) = T(n,1) = Min_{k=1..A001222(n)} T(n,k). (End)
EXAMPLE
Triangle begins
1;
2;
3;
2, 2;
5;
2, 3;
7;
2, 2, 2;
3, 3;
2, 5;
11;
2, 2, 3;
...
MAPLE
P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: 1; for n from 2 to 45 do P(n) od; # yields sequence in triangular form; Emeric Deutsch, Feb 13 2005
MATHEMATICA
row[n_] := Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]; Flatten[ Table[ row[n], {n, 1, 45}]] (* Jean-François Alcover, Dec 01 2011 *)
PROG
(Haskell)
import Data.List (unfoldr)
a027746 n k = a027746_tabl !! (n-1) !! (k-1)
a027746_tabl = map a027746_row [1..]
a027746_row 1 = [1]
a027746_row n = unfoldr fact n where
fact 1 = Nothing
fact x = Just (p, x `div` p) where p = a020639 x
-- Reinhard Zumkeller, Aug 27 2011
(PARI) A027746_row(n, o=[1])=if(n>1, concat(apply(t->vector(t[2], i, t[1]), Vec(factor(n)~))), o) \\ Use %(n, []) if you want the more natural [] for the first row. - M. F. Hasler, Jul 29 2015
(Sage) v=[1]
for k in [2..45]: v.extend(p for (p, m) in factor(k) for _ in range(m))
print(v) # Giuseppe Coppoletta, Dec 29 2017
(Python)
def factors(n: int) -> list[int]:
p = n
L:list[int] = []
for f in range(2, p + 1):
if f * f > p: break
while True:
q, r = divmod(p, f)
if r != 0: break
L.append(f)
p = q
if p == 1: return L
L.append(p)
return L # Peter Luschny, Jul 18 2024
CROSSREFS
a(A022559(A000040(n))+1) = A000040(n).
Column 1 is A020639, columns 2 and 3 correspond to A014673 and A115561.
A281890 measures frequency of each prime in each column, with A281889 giving median values.
Cf. A175943 (partial products), A265110 (partial row products), A265111.
Sequence in context: A336526 A225243 A207338 * A307746 A348477 A240230
KEYWORD
nonn,easy,nice,tabf
EXTENSIONS
More terms from James A. Sellers
STATUS
approved