login
A166911
a(n) = (9 + 14*n + 12*n^2 + 4*n^3)/3.
6
3, 13, 39, 89, 171, 293, 463, 689, 979, 1341, 1783, 2313, 2939, 3669, 4511, 5473, 6563, 7789, 9159, 10681, 12363, 14213, 16239, 18449, 20851, 23453, 26263, 29289, 32539, 36021, 39743, 43713, 47939, 52429, 57191, 62233, 67563, 73189, 79119, 85361, 91923
OFFSET
0,1
COMMENTS
The inverse binomial transform yields the quasi-finite sequence 3,10,16,8,0,.. (0 continued).
These are the bottom-left numbers in the blocks (each with 2 rows) shown in A172002, the
atomic number of the leftmost element in the 2nd, 4th, 6th etc. row of the Janet table.
REFERENCES
Charles Janet, La structure du noyau de l'atome .., Nov 1927, page 15.
FORMULA
First differences: a(n)-a(n-1) = 2+4*n+4*n^2 = 1+(1+2n)^2 = 1 + A016754(n+1) = A069894(n+1).
Second differences: a(n) - 2*a(n-1) + a(n-2) = 8*n = A008590(n+2).
Third differences: a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (3 + x + 5*x^2 - x^3)/(1-x)^4.
a(n) = A166464(n) + 2*(n+1)^2 = A166464(n) + A001105(n+1).
E.g.f.: (1/3)*(9 + 30*x + 24*x^2 + 4*x^3)*exp(x). - G. C. Greubel, May 28 2016
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {3, 13, 39, 89}, 100] (* G. C. Greubel, May 28 2016 *)
PROG
(Magma) [(9+14*n+12*n^2+4*n^3)/3: n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011
(PARI) a(n)=n*(4*n^2+12*n+14)/3+3 \\ Charles R Greathouse IV, Dec 21 2011
CROSSREFS
Sequence in context: A072790 A323009 A328703 * A103657 A320661 A122504
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 23 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Mar 02 2010
STATUS
approved