login
A236509
Primes p with p + 2, p + 6 and prime(p) + 6 all prime.
2
5, 11, 107, 227, 311, 347, 821, 857, 1091, 1607, 1997, 2657, 3527, 4931, 5231, 8087, 8231, 9431, 10331, 11171, 12917, 13691, 13877, 21377, 22271, 24917, 27737, 29567, 32057, 33347, 35591, 36467, 37307, 39227, 42017
OFFSET
1,1
COMMENTS
According to the conjecture in A236508, this sequence should have infinitely many terms.
EXAMPLE
a(1) = 5 since 5, 5 + 2 = 7, 5 + 6 = 11 and prime(5) + 6 = 17 are all prime, but 2 + 2 = 4 and 3 + 6 = 9 are both composite.
MATHEMATICA
p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[n+6]&&PrimeQ[Prime[n]+6]
n=0; Do[If[p[Prime[m]], n=n+1; Print[n, " ", Prime[m]]], {m, 1, 10^6}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 27 2014
STATUS
approved