OFFSET
1,2
COMMENTS
This sequence is a "recursed variant" of A249811.
From Antti Karttunen, Jan 18 2015: (Start)
This can be viewed as an entanglement or encoding permutation where the complementary pairs of sequences to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with another complementary pair: even numbers in the order they appear in A253886 and odd numbers in their usual order: (A253886/A005408).
From the above follows also that this sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent and subtracting one, and each child to the right is obtained by applying A253886 to the parent:
1
|
...................2...................
3 4
5......../ \........8 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
9 14 15 24 13 20 11 10
17 26 27 34 29 44 47 48 25 38 39 54 21 32 19 12
(End)
For listening I recommend some (mostly) percussive MIDI-instrument and the pitch offset set to at least 29 and the tempo (rate) to about 60. - Antti Karttunen, Feb 17 2015
LINKS
FORMULA
a(1) = 1, for n>1: a(n) = A083221(A001511(n), a(A003602(n))) - 1 = A249741(A001511(n), a(A003602(n))).
a(1) = 1, a(2n) = A253886(a(n)), a(2n+1) = (2*a(n+1))-1. - Antti Karttunen, Jan 18 2015
As a composition of other permutations:
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back.]
PROG
CROSSREFS
Inverse: A249813.
AUTHOR
Antti Karttunen, Nov 06 2014
STATUS
approved