proposed
approved
proposed
approved
editing
proposed
allocated for Gus WisemanNumbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081).
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 25, 27, 29, 31, 32, 37, 41, 43, 49, 53, 57, 59, 61, 63, 64, 65, 73, 81, 85, 101, 105, 107, 113, 117, 121, 123, 125, 127, 128, 129, 137, 145, 165, 169, 171, 193, 201, 209, 213, 229, 233, 235, 241, 245, 249, 251
1,2
The ordering of finitary multisets is first by length and then lexicographically. This is also the ordering used for Mathematica expressions.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a>
The terms together with their corresponding ordered rooted trees begin:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
7: (o(o))
8: (ooo)
9: ((oo))
11: ((o)(o))
13: (o((o)))
15: (oo(o))
16: (oooo)
17: ((((o))))
21: ((o)((o)))
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
srt[n_]:=If[n==1, {}, srt/@stc[n-1]];
Select[Range[1000], FreeQ[srt[#], _[__]?(!OrderedQ[#]&)]&]
allocated
nonn
Gus Wiseman, Nov 14 2022
approved
editing
allocated for Gus Wiseman
allocated
approved