Displaying 1-10 of 690 results found.
page
1
2
3
4
5
6
7
8
9
10
... 69
Decimal expansion of Otter's rooted tree constant: lim_{n->inf} A000081(n+1)/ A000081(n).
+20
68
2, 9, 5, 5, 7, 6, 5, 2, 8, 5, 6, 5, 1, 9, 9, 4, 9, 7, 4, 7, 1, 4, 8, 1, 7, 5, 2, 4, 1, 2, 3, 1, 9, 4, 5, 8, 8, 3, 7, 5, 4, 9, 2, 3, 0, 4, 6, 6, 3, 5, 9, 6, 5, 9, 5, 3, 5, 0, 4, 7, 2, 4, 7, 8, 9, 0, 5, 9, 6, 4, 7, 3, 3, 1, 3, 9, 5, 7, 4, 9, 5, 1, 0, 8, 6, 6, 6, 8, 2, 8, 3, 6, 7, 6, 5, 8, 1, 3, 5, 2, 5, 3
COMMENTS
Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 481) has a wrong value of this constant (2.9955765856). - Vaclav Kotesovec, Jan 04 2013
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
LINKS
Eric Weisstein's World of Mathematics, Tree
EXAMPLE
2.95576528565199497471481752412319458837549230466359659535...
MATHEMATICA
digits = 99; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1+Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; RealDigits[alpha, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)
Numbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081).
+20
14
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 25, 27, 29, 31, 32, 37, 41, 43, 49, 53, 57, 59, 61, 63, 64, 65, 73, 81, 85, 101, 105, 107, 113, 117, 121, 123, 125, 127, 128, 129, 137, 145, 165, 169, 171, 193, 201, 209, 213, 229, 233, 235, 241, 245, 249, 251
COMMENTS
The ordering of finitary multisets is first by length and then lexicographically. This is also the ordering used for Mathematica expressions.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
EXAMPLE
The terms together with their corresponding ordered rooted trees begin:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
7: (o(o))
8: (ooo)
9: ((oo))
11: ((o)(o))
13: (o((o)))
15: (oo(o))
16: (oooo)
17: ((((o))))
21: ((o)((o)))
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
srt[n_]:=If[n==1, {}, srt/@stc[n-1]];
Select[Range[1000], FreeQ[srt[#], _[__]?(!OrderedQ[#]&)]&]
CROSSREFS
These trees are counted by A000081.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.
INVERTi transform of A000081 = [1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486,...].
+20
8
1, 1, 1, 2, 3, 8, 16, 41, 98, 250, 631, 1646, 4285, 11338, 30135, 80791, 217673, 590010, 1606188, 4392219, 12055393, 33206321, 91752211, 254261363, 706465999, 1967743066, 5493195530, 15367129299, 43073007846, 120949992543, 340206026166, 958444631917
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148175241..., c = A187770 = 0.4399240125710253040409033914... . - Vaclav Kotesovec, Sep 06 2014
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<2, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= proc(n) option remember; local i; `if`(n<0, -1,
-add(a(n-i) *b(i+1), i=1..n+1))
end:
MATHEMATICA
b[n_] := b[n] = If[n < 2, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := a[n] = If[n < 0, -1, -Sum[a[n-i]*b[i+1], {i, 1, n+1}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)
Triangle T(n,k) in which n-th row lists the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<= A000081(n).
+20
8
1, 2, 12, 9, 156, 100, 80, 56, 3160, 1880, 1180, 1420, 950, 1360, 890, 660, 480, 87990, 50496, 29682, 35382, 24042, 22008, 14928, 31968, 20268, 14988, 10848, 34974, 21474, 13314, 15114, 10974, 13014, 8874, 6534, 5094, 3218628, 1806476, 1021552, 588756, 1189132
COMMENTS
The ordering of the functions is the same as in A215703 and is defined by the algorithm below.
EXAMPLE
For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56.
Triangle T(n,k) begins:
: 1;
: 2;
: 12, 9;
: 156, 100, 80, 56;
: 3160, 1880, 1180, 1420, 950, 1360, 890, 660, 480;
: 87990, 50496, 29682, 35382, 24042, 22008, 14928, 31968, 20268, ...
MAPLE
with(combinat):
F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
`if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
end:
T:= n-> map(f-> n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), F(n))[]:
seq(T(n), n=1..7);
CROSSREFS
Last elements of rows give: A033917.
A version with sorted row elements is: A216350.
Triangle T(n,k) in which n-th row lists in increasing order the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<= A000081(n).
+20
8
1, 2, 9, 12, 56, 80, 100, 156, 480, 660, 890, 950, 1180, 1360, 1420, 1880, 3160, 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, 20268, 21474, 22008, 24042, 29682, 31968, 34974, 35382, 50496, 87990, 65534, 78134, 102494, 131684, 141974
EXAMPLE
For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => 4th row = [56, 80, 100, 156].
Triangle T(n,k) begins:
: 1;
: 2;
: 9, 12;
: 56, 80, 100, 156;
: 480, 660, 890, 950, 1180, 1360, 1420, 1880, 3160;
: 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, ...
MAPLE
with(combinat):
F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
`if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
end:
T:= n-> sort(map(f-> n!*coeff(series(subs(x=x+1, f)
, x, n+1), x, n), F(n)))[]:
seq(T(n), n=1..7);
CROSSREFS
Last elements of rows give: A216351.
A version with different ordering of row elements is: A216349.
Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<= A000081(n).
+20
5
2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
COMMENTS
There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees.
FORMULA
T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1.
EXAMPLE
856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0). The encoded rooted tree is:
. o
. /|\
. o o o
. |
. o
Triangle T(n,k) begins:
2;
12;
52, 56;
212, 216, 232, 240;
852, 856, 872, 880, 920, 936, 944, 976, 992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100, 111000;
11010100, 11011000, 11101000, 11110000;
1101010100, 1101011000, 1101101000, 1101110000, 1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
MAPLE
F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
[seq (F(i)[w[t]-t+1], t=1..j), v[]], w=combinat[choose](
[$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
end:
b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
end:
T:= proc(n) option remember; map(b, F(n))[] end:
seq(T(n), n=1..7);
CROSSREFS
Last elements of rows give: A020522.
Numbers k such that A000081(k) is prime.
+20
4
3, 10, 15, 343, 387, 1087, 2981, 96761
COMMENTS
A000081(2981) = O(10^1400) is only a probably prime. No more terms < 6000.
0, 1, 4, 20, 115, 719, 4766, 32973, 235381, 1721159, 12826228, 97055181, 743724984, 5759636510, 45007066269, 354426847597, 2809934352700, 22409533673568, 179655930440464, 1447023384581029, 11703780079612453, 95020085893954917, 774088023431472074
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<2, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= n-> b(2*n):
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
1, 2, 6, 15, 41, 106, 284, 750, 2010, 5382, 14523, 39290, 106854, 291552, 798675, 2194828, 6051153, 16730373, 46383002, 128910484, 359115067, 1002575810, 2804667061, 7860780578, 22070885735, 62071872704, 174842835886, 493217417610
MAPLE
if N = 0 then
1;
else
end if;
end proc:
MATHEMATICA
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #*a81[#]&], {j, n - 1}]/(n - 1)];
A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np] * a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
A280788[n_] := If[n == 0, 1, Sum[a81[np+1]* A027852[n-np+2], {np, 0, n}]];
1, 2, 9, 48, 286, 1842, 12486, 87811, 634847, 4688676, 35221832, 268282855, 2067174645, 16083734329, 126186554308, 997171512998, 7929819784355, 63411730258053, 509588049810620, 4113254119923150, 33333125878283632, 271097737169671824, 2212039245722726118
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<2, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= n-> b(2*n+1):
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; a[n_] := b[2*n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
Search completed in 0.422 seconds
|