login
A014715
Decimal expansion of Conway's constant.
7
1, 3, 0, 3, 5, 7, 7, 2, 6, 9, 0, 3, 4, 2, 9, 6, 3, 9, 1, 2, 5, 7, 0, 9, 9, 1, 1, 2, 1, 5, 2, 5, 5, 1, 8, 9, 0, 7, 3, 0, 7, 0, 2, 5, 0, 4, 6, 5, 9, 4, 0, 4, 8, 7, 5, 7, 5, 4, 8, 6, 1, 3, 9, 0, 6, 2, 8, 5, 5, 0, 8, 8, 7, 8, 5, 2, 4, 6, 1, 5, 5, 7, 1, 2, 6, 8, 1, 5, 7, 6, 6, 8, 6, 4, 4, 2, 5, 2, 2, 5, 5, 5
OFFSET
1,2
COMMENTS
An algebraic integer of degree 71. - Charles R Greathouse IV, Aug 10 2014
REFERENCES
J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 486.
I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
LINKS
Edward Krogius Table of n, a(n) for n = 1..50000 (terms 1..20000 from Harry J. Smith).
Éric Brier, Rémi Géraud-Stewart, David Naccache, Alessandro Pacco, and Emanuele Troiani, Stuttering Conway Sequences Are Still Conway Sequences, arXiv:2006.06837 [math.DS], 2020.
John Conway and Brady Haran, Look-and-Say Numbers (2014).
S. R. Finch, Conway's Constant
S. R. Finch, Conway's Constant [From the Wayback Machine]
Thomas Morrill, Look, Knave, arXiv:2004.06414 [math.CO], 2020.
Eric Weisstein's World of Mathematics, Conways Constant
Eric Weisstein's World of Mathematics, Lookand Say Sequence
EXAMPLE
1.303577269034296391257099112152551890730702504659404875754861390628550...
MATHEMATICA
RealDigits[ NSolve[{0 == Plus @@ ({1, 0, -1, -2, -1, 2, 2, 1, -1, -1, -1, -1, -1, 2, 5, 3, -2, -10, -3, -2, 6, 6, 1, 9, -3, -7, -8, -8, 10, 6, 8, -5, -12, 7, -7, 7, 1, -3, 10, 1, -6, -2, -10, -3, 2, 9, -3, 14, -8, 0, -7, 9, 3, -4, -10, -7, 12, 7, 2, -12, -4, -2, 5, 0, 1, -7, 7, -4, 12, -6, 3, -6} x^Range[71, 0, -1])}, {x}, 105][[-1, -1, -1]]][[1]] (* Ryan Propper, Jul 29 2005 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 20080); x=NULL; r=solve(x=1, 2, \
x^71-x^69-2*x^68-x^67+2*x^66+2*x^65+x^64-x^63-x^62-x^61-x^60\
-x^59+2*x^58+5*x^57+3*x^56-2*x^55-10*x^54-3*x^53-2*x^52+6*x^51\
+6*x^50+x^49+9*x^48-3*x^47-7*x^46-8*x^45-8*x^44+10*x^43+6*x^42\
+8*x^41-5*x^40-12*x^39+7*x^38-7*x^37+7*x^36+x^35-3*x^34+10*x^33\
+x^32-6*x^31-2*x^30-10*x^29-3*x^28+2*x^27+9*x^26-3*x^25+14*x^24\
-8*x^23-7*x^21+9*x^20+3*x^19-4*x^18-10*x^17-7*x^16+12*x^15\
+7*x^14+2*x^13-12*x^12-4*x^11-2*x^10+5*x^9+x^7-7*x^6+7*x^5\
-4*x^4+12*x^3-6*x^2+3*x-6); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b014715.txt", n, " ", d)); } \\ Harry J. Smith, May 15 2009
(PARI) P=Pol([1, 0, -1, -2, -1, 2, 2, 1, -1, -1, -1, -1, -1, 2, 5, 3, -2, -10, -3, -2, 6, 6, 1, 9, -3, -7, -8, -8, 10, 6, 8, -5, -12, 7, -7, 7, 1, -3, 10, 1, -6, -2, -10, -3, 2, 9, -3, 14, -8, 0, -7, 9, 3, -4, -10, -7, 12, 7, 2, -12, -4, -2, 5, 0, 1, -7, 7, -4, 12, -6, 3, -6]); polrootsreal(P)[3] \\ Charles R Greathouse IV, Aug 10 2014
CROSSREFS
KEYWORD
nonn,cons
EXTENSIONS
More terms from Eric W. Weisstein, Jul 01 2003
STATUS
approved