login
A000200
Number of bicentered hydrocarbons with n atoms.
(Formerly M2288 N0905)
9
0, 0, 1, 0, 1, 1, 3, 3, 9, 15, 38, 73, 174, 380, 915, 2124, 5134, 12281, 30010, 73401, 181835, 452165, 1133252, 2851710, 7215262, 18326528, 46750268, 119687146, 307528889, 792716193, 2049703887, 5314775856, 13817638615, 36012395538
OFFSET
0,7
REFERENCES
Busacker and Saaty, Finite Graphs and Networks, 1965, p. 201 (they reproduce Cayley's mistakes).
A. Cayley, "On the mathematical theory of isomers", Phil. Mag. vol. 67 (1874), 444-447.
A. Cayley, "Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden...", Chem. Ber. 8 (1875), 1056-1059.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
N:= 45: for i from 1 to N do tt:= t[ i ]-t[ i-1 ]; b[ i ]:= series((tt^2+subs(z=z^2, tt))/2+O(z^(N+1)), z, 200): od: i:= 'i': bicent:= series(sum(b[ i ], i=1..N), z, 200); G000200:= bicent;A000200:= n->coeff(G000200, z, n);
# Maple code continues fromA000022:bicentered == unordered pair of ternary trees of the same height:
MATHEMATICA
n = 40; (* algorithm from Rains and Sloane *)
S3[f_, h_, x_]:= f[h, x]^3/6 + f[h, x] f[h, x^2]/2 + f[h, x^3]/3;
T[-1, z_]:= 1; T[h_, z_]:= T[h, z] = Table[z^k, {k, 0, n}].Take[CoefficientList[z^(n+1) + 1 + S3[T, h-1, z]z, z], n+1];
Sum[Take[CoefficientList[z^(n+1) + (T[h, z] - T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}] (*Robert A. Russell,Sep 15 2018 *)
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane,E. M. Rains (rains(AT)caltech.edu)
STATUS
approved