login
A000214
Number of equivalence classes of Boolean functions of n variables under action of AG(n,2).
(Formerly M2470 N0980)
6
3, 5, 10, 32, 382, 15768919, 16224999167506438730294, 84575066435667906978109556031081616704183639810103015118
OFFSET
1,1
COMMENTS
AG denotes affine group.
REFERENCES
V. Jovovic, The cycle indices polynomials of some classical groups, Belgrade, 1995, unpublished.
R. J. Lechner, Harmonic Analysis of Switching Functions, in A. Mukhopadhyay, ed., Recent Developments in Switching Theory, Ac Press, 1971, pp. 121-254, esp. p. 186.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kenny Lau,Table of n, a(n) for n = 1..10(one digit in a(9) corrected byGeorg Fischer,Apr 13 2019)
H. Fripertinger,Cycle indices of linear, affine and projective groups,Linear Algebra and Its Applications, 263, 133-156, 1997.
M. A. Harrison,On the classification of Boolean functions by the general linear and affine groups,J. Soc. Industrial and Applied Mathematics, 12.2 (1964), 285-299. [This journal later became the SIAM Journal]
M. A. Harrison,On asymptotic estimates in switching and automata theory,J. Assoc. Comput. Mach. 13 1966, 151-157.
Vladeta Jovovic,Cycle indices
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms fromVladeta Jovovic
STATUS
approved