login
A007461
Shifts left under AND-convolution with itself.
(Formerly M0117)
7
1, 1, 2, 1, 2, 4, 0, 5, 2, 4, 0, 10, 0, 12, 4, 13, 6, 12, 0, 18, 12, 20, 20, 36, 20, 36, 16, 44, 32, 60, 40, 73, 50, 56, 40, 58, 44, 52, 60, 84, 36, 112, 88, 108, 136, 132, 152, 178, 136, 232, 108, 260, 244, 256, 304, 288
OFFSET
0,3
COMMENTS
a(A000225(n)) mod 2 = 1, a(A062289(n)) mod 2 = 0. [Reinhard Zumkeller,Apr 02 2012]
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane,Some canonical sequences of integers,Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane,Some canonical sequences of integers,Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
Bits[And](a(i), a(n-1-i)), i=0..n-1))
end:
seq(a(n), n=0..80); #Alois P. Heinz,Jun 16 2018
MATHEMATICA
a[0]=1; a[1]=1; a[n_]:= a[n] = Sum[BitAnd[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 60}] (*Jean-François Alcover,Sep 07 2012 *)
PROG
(Haskell)
import Data.Bits ((.&.))
a007461 n = a007461_list!! n
a007461_list = 1: f [1, 1] where
f xs = x: f (x:xs) where
x = sum $ zipWith (.&.) xs $ tail $ reverse xs:: Integer
--Reinhard Zumkeller,Apr 02 2012
KEYWORD
nonn,nice,eigen
STATUS
approved